OVERVIEW

The single-chip PCI Express based 88E8053 device integrates the Marvell[®] market-leading Gigabit PHY with the proven Marvell Gigabit MAC and SERDES cores, delivering an ultra-small form factor and high performance. Delivered with the industry's most comprehensive software driver suite, this Yukon device is ideally suited for LAN on motherboard (LOM) and Network Interface Card (NIC) applications. The 88E8053 device is compliant with the PCI Express 1.0a specification. Offered in a 9 x 9 mm, 64-pin QFN package, the 88E8053 reduces board space required for Gigabit LOM implementation significantly.

The device is optimized for maximum throughput and low CPU utilization. A 48 KB on-chip buffer eliminates the need for any external memory. Packet processing tasks such as TCP segmentation, VLAN insertion and removal, TCP/UDP/IP checksum calculation and checking are all performed on-chip. These offloads along with interrupt moderation schemes reduce CPU utilization and improve the overall system performance.

The 88E8053 device incorporates advanced power management schemes, enabling energy efficient operation. With features such as Wake on LAN and Smart Power Down in the absence of link it is well suited for client applications including mobile PCs.

The 88E8053 Yukon device incorporates the Marvell Virtual Cable Tester™ (VCT™) technology for advanced cable diagnostics. VCT enables IT managers to pinpoint the location of cabling issues down to a meter or less, reducing network installation and support costs.

The device comes with a comprehensive suite of software device drivers for all desktop operating systems, including Microsoft® Windows® 98/Me, NT, 2000, and XP, Linux, and Novell Netware. A complete hardware reference design is provided for a quick implementation.

FEATURES

PCI EXPRESS FEATURES

- PCI Express base specification 1.0a compliant
- x1 PCI Express interface with 2.5 GHz signaling
- Active state power management (L0s) support
- Advanced error reporting

MAC / PHY FEATURES

- · Configurable 48 KB deep buffer
- · Descriptor bursting and caching
- Message signaled interrupts
- TCP segmentation offload / Large-send support
- On-chip VLAN insertion and removal
- · TCP, IP, UDP Checksum offload
- Interrupt moderation
- Jumbo frame support
- Compliant to 802.3x flow control support
- IEEE 802.1p and 802.1q support
- 10/100/1000 IEEE 802.3 compliant
- Automatic MDI/MDIX crossover at all speeds

MANAGEABILITY

- Wake On LAN (WOL) power management support
- Compliant to ACPI 2.0 specification
- Out of the box WOL support
- Wake On Link
- Serial Peripheral Interface (SPI) for remote boot (PXE 2.1)
- · Smart power down when link is not detected
- Marvell Virtual Cable Tester[™] (VCT) for advanced cable diagnostics

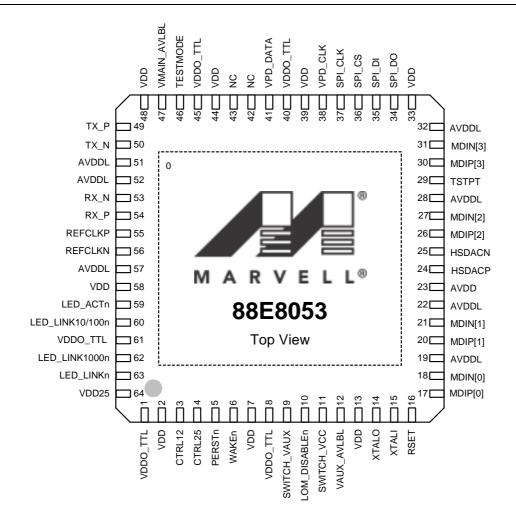
OTHER FEATURES

- LOM disable pin
- Power regulator outputs for 2.5V and 1.2V supplies
- Two Wire Serial Interface (TWSI) for VPD EEPROM
- 9 mm x 9 mm, 64-pin QFN package

Table of Contents

SEC	TION 1	. SIGNAL DESCRIPTION	7
1.1	64-Pin	QFN Pinout (Top View)	7
1.2	Pin De 1.2.1	Pin Type Definitions	
SEC	TION 2	FUNCTIONAL DESCRIPTION	14
2.1	Overv	iew	14
2.2	PCI-E	xpress Features	16
2.3	SPI FI	ash Memory	18
2.4		ash Memory Loader	
2.5		EEPROM	
2.6	TWSI	EEPROM Loader	23
2.7		n Go Unit	
2.8	Interru	ıpts	25
	2.8.1	IRQ Moderation Timer	
	2.8.2	Message Signaled Interrupts (MSI)	28
2.9	Buffer	Management Units (BMU)	28
	2.9.1	Format of Descriptor and Status List Elements	
	2.9.2	TCP/UDP Processing of RX and TX BMU	
	2.9.3	Prefetch Unit	40
	2.9.4	Status BMU	
	2.9.5	Polling Unit	45
2.10	Timer		46
2.11	Times	tamp Timer	46
2.12	Wake	on LAN	47
		Wake up Frame Logic	
	2.12.2	Magic Packet frame detect	49
	2.12.3	Link Change Monitoring	49

2.13	GMAC	50
2.14	PHY	51
2 1 5	LEDs	E4
2.15	2.15.1 LED Capabilities of 88E8053	
	·	
2.16	VPD	52
2.17	TWSI Interface	52
2 18	Parity Generation/Check	52
2.10	2.18.1 Internal byte based parity checking/generating	
	2.18.2 Parity Checking/Generating on PCI as target	
	2.18.3 Parity Checking/generating on PCI as master	
SEC	TION 3. REGISTER DESCRIPTION	54
3.1	Legend	
	G	
3.2	PCI-Express Configuration Register File	
	3.2.1 Overview and Address Map	
	3.2.2 Registers of PCI Header Region	
	3.2.3 Registers of Header Region	
	3.2.4 Registers of Device Dependent Region	69
3.3	Control Register File	108
	3.3.1 Overview and Address Map	
	3.3.2 Registers	
3.4	GMAC Registers	213
	3.4.1 MAC Register Definitions	
SEC	TION 4. ELECTRICAL SPECIFICATIONS	239
4.1	Absolute Maximum Ratings	239
4.2	-	
4.2	Recommended Operating Conditions	
4.3	Package Thermal Information	
	4.3.1 Thermal Conditions for 64-pin QFN Package	241
4.4	DC Electrical Characteristics	242
	4.4.1 Current Consumption AVDDL	
	4.4.2 Current Consumption VDD	
	4.4.3 Current Consumption VDDO_TTL	
	4.4.4 Digital Operating Conditions	
	4.4.5 IEEE DC Transceiver Parameters	
4.5	AC Timing Reference Values	246
4.6	AC Electrical Specifications	247
	4.6.1 Reset Timing	
		← ⊤ /


	4.6.3	Clock Timing	249
	4.6.4	PCI Express Timing	250
		Two-Wire Serial Interface (TWSI) Timing	
		SPI FLash Memory Interface Timing	
	4.6.7	SMBUS Specifications	255
4.7	IEEE /	AC Parameters	256
		S. MECHANICAL DRAWINGS	
SEC	TION 5		257

Section 1. Signal Description

1.1 64-Pin QFN Pinout (Top View)

The 88E8053 device is manufactured in a 64-pin QFN, 9 x 9 mm package.

Figure 1: 88E8053 64-Pin QFN Package (Top View)

1.2 Pin Description

1.2.1 Pin Type Definitions

Pin Type	Definition
Н	Input with hysteresis
I/O	Input and output
1	Input only
0	Output only
PU	Internal pull-up
PD	Internal pull-down
D	Open drain output
Z	Tri-state output
mA	DC sink capability

Table 1: PCI Express Signals

88E8053 Pin #	Pin Name	Pin Type	Description
49 50	TX_P TX_N	O Analog	PCI Express Transmit line (positive and negative pair). 2.5 GHz low-voltage pair.
54 53	RX_P RX_N	I Analog	PCI Express Receive line (positive and negative pair). 2.5 GHz low-voltage pair.
6	WAKEn	0	PCI Express wake signal. Driven low to re-activate the PCI Express lin hiearchy's main power rails and reference clocks. (Open collector, active low.) Multiplexed to the same pin as PCI signal PMEn.
55 56	REFCLKP REFCLKN	I Analog	PCI Express platform reference clock (differential pair of positive and negative signal lines). 100 MHz low-voltage interface.
5	PERSTn	I	PCI Express fundamental reset. Asserted 100 ms after power rails are within specifications.

Table 2: Media Dependent Interface (PHY)

88E8053 Pin #	Pin Name	Pin Type	Description
17 18	MDIP[0] MDIN[0]	I/O, D	Media Dependent InterfacePositive/Negative[0]. In 1000BASE-T mode in MDI configuration, MDIP/N[0] correspond to BI_DAP/N. In MDIX configuration, MDIP/N[0] correspond to BI_DBP/N. In 100BASE-TX and 10BASE-T modes in MDI configuration, MDIP/N[0] are used for the transmit pair. In MDIX configuration, MDIP/N[0] are used for the receive pair. MDIP/N[0] should be tied to ground if not used.
20 21	MDIP[1] MDIN[1]	I/O, D	Media Dependent InterfacePositive/Negative[1]. In 1000BASE-T mode in MDI configuration, MDIP/N[1] correspond to BI_DAP/N. In MDIX configuration, MDIP/N[1] correspond to BI_DBP/N. In 100BASE-TX and 10BASE-T modes in MDI configuration, MDIP/N[1] are used for the transmit pair. In MDIX configuration, MDIP/N[1] are used for the receive pair. MDIP/N[1] should be tied to ground if not used.
26 27	MDIP[2] MDIN[2]	I/O, D	Media Dependent InterfacePositive/Negative[2]. In 1000BASE-T mode in MDI configuration, MDIP/N[2] correspond to BI_DAP/N. In MDIX configuration, MDIP/N[2] correspond to BI_DBP/N. In 100BASE-TX and 10BASE-T modes, MDIP/N[2] are not used. MDIP/N[2] should be tied to ground if not used.
30 31	MDIP[3] MDIN[3]	I/O, D	Media Dependent InterfacePositive/Negative[3]. In 1000BASE-T mode in MDI configuration, MDIP/N[3] correspond to BI_DAP/N. In MDIX configuration, MDIP/N[3] correspond to BI_DBP/N. In 100BASE-TX and 10BASE-T modes, MDIP/N[3] are not used. MDIP/N[3] should be tied to ground if not used.

Table 3: TWSI Interface (For Connection to TWSI EEPROM)

88E8053 Pin #	Pin Name	Pin Type	Description
38	VPD_CLK	O, D, PU	TWSI bus clock line to serial EEPROM (with VPD/Boot data). VPD_CLK contains an internal pull-up resistor.
41	VPD_DATA	Bi-Dir, PU	TWSI bus data line to serial EEPROM (with VPD/Boot data). VPD_DATA contains an internal pull-up resistor.

Table 4: SPI Flash Memory Interface

88E8053 Pin #	Pin Name	Pin Type	Description
34	SPI_DO	0	Data line leading to the SPI Flash Memory. SPI_DO contains an internal pull-up resistor.
35	SPI_DI	I	Data line coming from the SPI Flash Memory. SPI_DI contains an internal pull-up resistor.
37	SPI_CLK	0	Clock line for SPI Interface. SPI_CLK contains an internal pull-up resistor.
36	SPI_CS	0	Chip select for SPI Flash Memory. SPI_CS contains an internal pull-up resistor.

Table 5: Main Clock Interface (PHY)

88E8053 Pin #	Pin Name	Pin Type	Description
15	XTALI	1	Input from 25 MHz Crystal or Oscillator.
14	XTALO	0	Output to 25 MHz Crystal.

Table 6: Analog (PHY)

88E8053 Pin #	Pin Name	Pin Type	Description
10	LOM_ DISABLEn	I	Used in LOM applications. The LOM_DISABLEn pin is active low 0 = LAN on motherboard (LOM) disabled 1 = LOM enabled
12	VAUX_AVLBL	1	VAUX available signal.
11	SWITCH_VCC	0	Switch to VCC.
47	VMAIN_AVLBL	1	VMAIN available signal.
9	SWITCH_VAUX	0	Switch to Vaux.
24 25	HSDACP HSDACN	Analog O, D	PHY Test pin. These pins are used for debug only. If debug is not important and there are board space constraints, these pins should be left floating.
16	RSET	Analog I	PHY Constant voltage reference. External 5.0 k Ω 1% resistor connection to VSS.
4	CTRL25	O Analog	Regulator Control. This signal controls an external PNP transistor to generate the 2.5V power supply.
3	CTRL12	O Analog	Regulator Control. This signal controls an external PNP transistor to generate the 1.2V power supply.

Table 7: LED Interface

88E8053 Pin #	Pin Name	Pin Type	Description
59	LED_ACTn	TTL, D	Parallel LED activity indicator. Active low.
60	LED_ LINK10/100n	TTL, D	Parallel LED output for 100BASE-T link or speed. If the LED_LINK10/100 pin is active, it indicates 100 Mbps. Active low.
62	LED_LINK1000n	TTL, D	Parallel LED output for 1000BASE-T link. Active low.
63	LED_LINKn	TTL, D	Parallel LED output for 10/100/1000BASE-T link. Active low.

Table 8: Test Pins

88E8053 Pin #	Pin Name	Pin Type	Description
46	TESTMODE	I, PD	Selection of internal Test. (Default pull-down.)
29	TSTPT	0	Analog test point.

Table 9: Power & Ground

88E8053 Pin #	Pin Name	Pin Type	Description	
64	VDD25	Power	Power to TTL I/Os. 2.5V	
19 22 28 32 51 52 57	AVDDL	Power	Analog Power. 2.5V - Copper	
23	AVDD	Power	Analog Power. 2.5V (For 3GIOs)	
1 8 40 45 61	VDDO_TTL	Power	Power to TTL I/Os. 3.3V (Pin 8 can be used as power to VAUX 3.3V - see Application Note for details.)	
2 7 13 33 39 44 48 58	VDD	VDD	Power. 1.2V	
0	EPAD	Ground	Ground.	

Table 10: No Connect

88E8053 Pin #	Pin Name	Pin Type	Description	
42 43	NC		No connect. These pins must be left floating.	

Section 2. Functional Description

2.1 Overview

This Single Link Gigabit Ethernet Controller device comes with a PCI Express interface and Gigabit Ethernet cable connectivity. The device integrates PCI Express interface, BMUs, RAM, MAC, PHY, and SERDES cores.

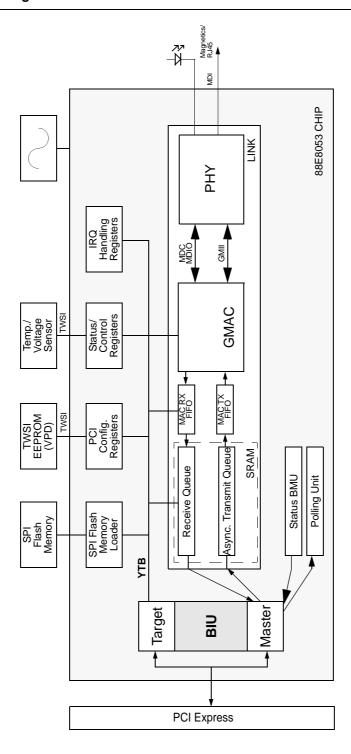
An optional 128/256 kByte SPI Flash Memory holds Bootcode and Configuration Data. The Configuration Data is read by the SPI Flash Memory Loader after POWER ON RESET. All writable registers on the PCI device, may be reloaded from the SPI Flash Memory. The SPI Flash Memory is required if other ROM options are not available for bootcode (PXE). The VPD data are stored within an onboard TWSI EEPROM. In absence of this TWSI EEPROM the VPD data may be stored within the SPI Flash Memory.

The PCI device is controlled by the system's CPU through the PCI Target Interface. The description of all accessible registers is concentrated in the chapters **Configuration Register File** and **Control Register File**. Most registers are controlled only at initialization time.

Receive/transmit data and descriptors are transferred to/from system memory over the PCI Interface controlled by the Buffer Management Units (BMU). The GE Link has a Receive Queue, and a asynchronous Transmit Queue. These two queues run independently. The BMU manages the data transfer to/from system memory. This is controlled by the system's CPU through descriptors allocating memory buffers. Descriptors are organized in chained lists.

The PCI FIFO provides data/space for burst transfers. The Rambuffer Control Logic organizes programmable Rambuffer areas in the internal SRAM as FIFOs for buffering of receive/transmit data (e.g. in order to prevent receive overflows). It controls the dataflow between its PCI FIFO and MAC FIFO through the allocated Rambuffer. Packets may be transferred in Flow Through Mode or Store & Forward Mode.

PCI Accesses are arbitrated in a hierarchical priority scheme. Transfer length is optimized for Cache Line Sizes and best PCI Command usage (descriptors and data). The PCI Master supports fully misaligned transfers of Receive/Transmit Data (descriptors must be located at dword boundaries).


The RAM Interface arbitrates RAM accesses requested by the Rambuffer Control Logics in a rotating priority scheme generally. In some cases the priority scheme is adapted dynamically (e.g. risk of receive overflow, Rate Control on transmit). Re-arbitration takes place on chunk level. Chunk length is programmable, default is 32 qwords.

For Transmit Packets a TCP/IP Checksum may be calculated and inserted, on Receive Packets, TCP/IP Checksum is calculated. TCP/IP Checksum Generation/Checking is controlled by the descriptors. TCP/UDP Checksum generation and insertion can be handled also for large fragmented packets. For UDP checksum is calculated over all the appropriate packets and is inserted into the first packet of the sequence.

Figure 2 shows the device block diagram.

Page 14

Figure 2: Block Diagram

2.2 PCI-Express Features

Table 11 lists the features of the PCI-Express interface.

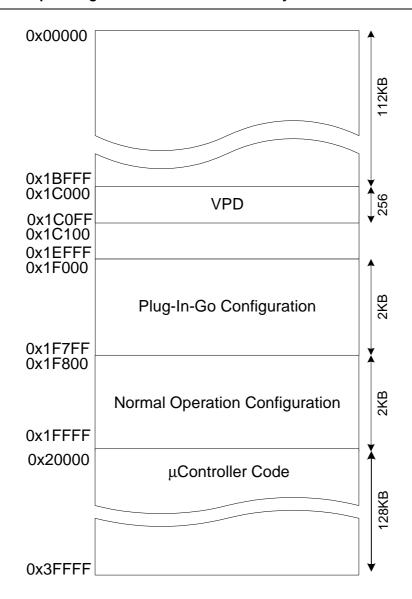
Table 11: General PCI-Express Features

Feature Name	Description			
Standard Compliance	Compliant with PCI-Express Base 1.0a Specification.			
PCI-Express port	 2.5 GHz Signaling. X1 link width. Width strapped on reset. Support link reversal and lane polarity reversal. 			
Master transaction types	 Support of up to 8 outstanding NP requests as a master (requester). All Memory transactions, except lock related. 			
Target transaction types	 Support of 2 outstanding non-posted requests as a target (completer). All Memory transactions, except lock related. I/O transactions - supported only when working in legacy endpoint mode. Configuration transactions - type0 only. Support up to 8B target accesses. 			
Message support	 Interrupt messages. Error messages. PM related. Hot-plug related. Not supported - lock related and vendor specific messages. 			
Configuration Space.	 Extended 4 KB PCI-Express configuration space. Single Function Device. External configuration register file. 			
Interrupts	 Support of both MSI and interrupt messages. External BIU master agent is responsible for MSI generation. 			
Error Reporting	 Full support of PCI-Express base-line error reporting. Full support of Advanced error reporting capability. Three error severity levels: Correctable, Uncorrectable - Non-Fatal and Uncorrectable - Fatal. Header logging and pointer to first uncorrectable error. Programmable error severity. PCI error mapping - Mapping of errors to PCI error reporting mechanism. 			
Address Space	 Three 64bit memory BARs for internal registers access. One I/O BAR for internal registers access. Expansion ROM BAR. 			
Virtual Channels	 Support of baseline TC0-VC0 mapping. One virtual channel (VC) hardware resource. 			

Table 11: General PCI-Express Features

Feature Name	Description
Power Management	 Supported SW directed PM states: L0, L1, L2, L3 Supported Active State Link PM states: L0s-Rx.
	 Support of wake event generation from all device PM states including D3hot. Wake event signalling by WAKE# signal mechanisms.

Table 12: Main PCI-Express Parameters.


Feature Name	Description
Max Payload Size	• 128B
Maximum Read Request Size	Up to 4 KB
RCB - Read Completion Boundary parameter.	• 128B

2.3 SPI Flash Memory

The SPI Flash Memory has a size of 128/256 KByte. For future applications SPI Flash Memories up to 1 MByte can be handled.

Figure 3: Address Space Organization of SPI Flash Memory

The SPI Flash Memory may be mapped into the memory address space with sizes of 16 KB, 32 KB, 64 KB or 128 KB. The page size is defined by **Pagesize<1:0>** (**Our Register 1**).

If En Eprom (Our Register 1) is not set, the Expansion Rom Base Address Register is not presented to the Configuration Register File, the SPI Flash Memory is not mapped to the memory address space.

The mapped page is selected by setting Page Reg<2:0> (Our Register 1).

The base address is defined in the **Expansion Rom Base Address Register**. The **Expansion Rom Base Address Register** also holds the page size and **ROMEN** which controls enabling of the expansion ROM.

The 4 kBytes sector (0x1F000 - 0x1FFFF) holds data configuring the network adapter after PERSTn.

In absence of the TWSI EEPROM the SPI Flash Memory contains also VPD Data (0x1C000, 0x1C0FF, **SPI Flash Memory VPD Configuration Register**).

Memory accesses to the SPI Flash Memory are read only.

Write operations are completed normally on the bus and the data is discarded.

For programming of the SPI Flash Memory no additional 12V power supply and switching of the programming voltage is required.

The SPI Flash Memory (256 kB) is organized in eight sectors with 32 kBytes each and 128 pages (page = 256 Byte) per sector:

Table 13: Eight SPI Flash Memory Sectors

Sector Address	Sector
000000 to 007FFF	1
008000 to 00FFFF	2
010000 to 017FFF	3
018000 to 01FFFF	4
020000 to 027FFF	5
028000 to 02FFFF	6
030000 to 037FFF	7
038000 to 03FFFF	8

2.4 SPI Flash Memory Loader

The SPI Flash Memory Loader supports the following features:

- Loading of data after PERSTn from the SPI Flash Memory into the Configuration and Control Register File (where needed).
 - The loader is capable of accessing potentially all registers in the Control Register File space.
 - Register address and data are stored in 8-byte entries in the SPI Flash Memory.
 - The registers may be written with dword, word or byte accesses.
 - The 8-byte entries are located on 8-byte boundaries starting at address 0x1F800 (or 0x1F000 for Plug-In-Go, configurable within **SPI Flash Memory Loader Control Register**) of the SPI Flash Memory in increasing order. Each entry is marked with a key.
 - The selection of Plug-In-Go or normal operation configuration is done depending on the detected power supply by V_{AUX} or PCI power line.
 - If started, the loader reads subsequent entries starting with the initial value of the **Normal Loader Start Address** (Bit 27:16 in **SPI Flash Memory Loader Configuration Register**) or, if Plug In Go, with the value of the **PiG Loader Start Address** (Bit 11:0).
 - Loading is started by deassertion of PERSTn or the setting of the SPI loader start bit in the SPI Flash Memory Control Register.
 - While loading, accesses to any resource of the network adapter are terminated by Target Retry Cycles.
 - The transferred data after PERSTn in this way is limited to fulfill the requirements of PCI bus¹.
 - The command **SPI loader start** is intended for testing purposes only. It is not recommended to reload the **Configuration Register File** by using this command.

Table 14: First 8 byte unit within Normal Operation Configuration Region of SPI Flash Memory

31:24	23:16	15:8		7:0	Address
Address/upper	Address/lower	reserved	BE<3:0>	key = 0x55	0x1f800
Data<3>	Data<2>	Data<1>		Data<0>	0x1f804

Loading Boot-Code:

The boot data can be accessed as byte, word, or dword at a time. All combinations of byte-enables of the PCI specification are supported. There is a cache, which holds 2 consecutive dwords (8 bytes) of data. Initially, there is no valid data in the cache. When a boot access is initiated, consecutive dwords are fetched, starting with the dword containing the requested data. The requested byte/word/dword is forwarded as soon as the dword that contains the accessed address is loaded. The loader doesn't wait for the following dword fetch also to complete. A cache location (dword) is released (declared empty) when byte 4 in that dword is read out. Reading byte 4 may be done by dword/word/byte access. The SPI read continues as long as there is at least one empty location in the cache. This means that, in theory, the SPI memory could be transferred within one single burst throughout a sequential data load. The burst is broken when there is a jump in address or the access over the PCI bus takes too long time and the cache fills up. When requested data is in the cache (hit), data is supplied from the cache and no new SPI access is required. A new SPI access is initiated when there is a miss (requested data is not found in the cache or that dword is currently being fetched). The cache contents are made invalid when the SPI memory is written to.

Loading VPD-Data:

If the VPD-Data is in the SPI Flash Memory the whole 256 Byte can be accessed by 8 Read-Cycles to the VPD area (0x1c000 - 0x1c0ff). The data are stored in the lower dword of the cache.

Doc. No. MV-S102130-00, Rev. -- CONFIDENTIAL Copyright © 2004 Marvell

Page 20 Document Classification: Proprietary Information

T_{nhfa} PERSTn High to First configuration Access is limited to 2²⁵ clock cycles. PCI Express: 1s -> max. 2.8 KB

• Programming interface:

The data can be written byte, word or dword at a time. All combinations of byte-enables of the PCI specification are supported. The starting byte could be anywhere within a page. When the end of the page is reached, the address wraps around to the beginning of the same page and the data will be stored there. This means that the Software is capable to handle the sector and page borders that no data are lost.

Note: The same byte can't be reprogrammed without erasing the whole sector first.

Support of SPI Flash Memories of different vendors:

The current SPI Flash Memory devices of different vendors vary in their Instruction-Codes for the read ID instruction. After reset the used SPI Flash Memory needs to be identified by the SPI Flash Memory Loader. The identification of the Flash on the board after **PERSTn** should look like this:

- after the release of PERSTn the SPI Flash Memory Loader starts directly to read the Configuration Data. If
 the SPI Flash Memory is programmed the loader reads all data into the Register-File until key (0x55) cannot be found anymore. Then and also if the SPI Flash Memory was not programmed at all the loader
 moves to an idle state to wait for new commands.
- Afterwards the Software identifies the Flash. Therefore the Vendor- and Device-ID are read out of the SPI Flash Memory and the memory type is stored in the RD ID Protocol bit in SPI Flash Memory Control Register.

Depending on the EPROM type the software uses different instruction code sets (SPI Flash Memory Opcode 1 and 2 Register).

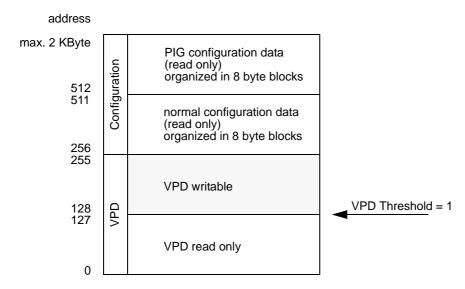
Even during identification of the SPI Flash Memory there are two possible protocols to be used. Maybe both protocols must be tried by software to read out the SPI Flash Memory ID.

Sector Erase:

Due to the fact that the Flash is divided into sectors only, a write to the VPD or configuration region leads to the erasure and rewriting of the whole VPD/configuration information.

Reprogrammable VPD during operation of the device can be achieved by the use of an additional TWSI EEPROM (see chapter 2.5 TWSI EEPROM on page 22).

- · Supported Instructions for the SPI Flash Memory:
 - Write Program Data into Memory Array
 - Chip Erase Erase All Sectors in Memory Array
 - Sector Erase Erase One Sector in Memory Array
 - WREN
 Set Write Enable Latch has to be set before Program, Chip- and Sector-Erase
 - Read Read Data from Memory Array
 - RDSR Read Status Register
 - RDID Read Vendor and Device ID (two different protocols)
 - NOP No Operation



2.5 TWSI EEPROM

The TWSI EEPROM is an external memory device for VPD (vital product data).

Its address space is divided into two parts (see Figure 4).

Figure 4: Internal Structure of TWSI EEPROM.

Within the lower address region (0 to 255) the VPD is located. This part contains the read only and writable section of VPD separated by VPD Threshold (see **VPD Write Thr** in Our Register 2 in chapter 3.2.4.1 Our Register 1 and Our Register 2 on page 69).

In higher addresses the configuration data is stored which is loaded automatically into the ASIC after PERSTn with its internal TWSI EEPROM Loader (see chapter 2.6 TWSI EEPROM Loader on page 23).

Two different configurations may be loaded by the TWSI EEPROM Loader depending on the current operation mode "normal" or "Plug in Go".

Normally this feature is not used due to the existence of the SPI Flash Memory, which also holds configuration data.

The TWSI EEPROM is read and written to via TWSI bus. Its TWSI address is 0b101000.

The size of the TWSI EEPROM, the amount of writable VPD area and the Device Select Byte used for VPD TWSI accesses are determined by the read only fields **VPD ROM Size**, **VPD Write Threshold** and **VPD Devsel**¹ in **Our Register 2** (see chapter 3.2.4.1 Our Register 1 and Our Register 2 on page 69). These fields can be reloaded from the SPI Flash Memory, if another device is used.

For manufacturing programming of the read only part of the TWSI EEPROM, Testmode (**En Config Write**) must be set. Then the whole TWSI EEPROM is writable. Programming of the TWSI EEPROM is managed with ASIC internal registers **VPD Address** and **VPD Data** (see chapter 3.2.4.10 VPD Address Register on page 78 and chapter 3.2.4.11 VPD Data Register on page 78).

After the next power cycle the read only areas within the TWSI EEPROM are write protected again

Doc. No. MV-S102130-00, Rev. -- CONFIDENTIAL Copyright © 2004 Marvell

^{1.} Hint: VPD Devsel must not be overwritten via TWSI EEPROM in absence of the SPI flash memory. This may lead to a complete damage of the board (TWSI EEPROM must be changed afterwards!!!

Page 23

TWSI EEPROM Loader 2.6

The TWSI EEPROM Loader looks for configuration data within the external TWSI EEPROM, although the configuration data is stored within the SPI Flash Memory and therefore no data is to be read out normally.

- The TWSI EEPROM Loader is active once after the execution of the SPI Flash Memory Loader (after PER-STn).
- It works analogously to the SPI Flash Memory Loader and loads startup data into the Configuration and Control Register File (where needed):
 - The loader is capable of accessing potentially all registers in the Control Register File space.
 - Register address and data are stored in 8-byte entries in the TWSI EEPROM (see Table 15 for details).
 - The 8-byte entries are located on 8-byte boundaries up from address 256 of the TWSI EEPROM in increasing order. Each entry is marked with a key byte (0x55).

Data format of first 8 byte block within TWSI EEPROM Table 15:

TWSI access cycle number	TWSI EEPROM Address	contents	
2	0x107	Data<3>	
	0x106	Data<2>	
	0x105	Data<1>	
	0x104	Data<0>	
1	0x103	Address/upp	per
	0x102	Address/low	er
	0x101	reserved	BE<0:3>
	0x100	Key = 0x55	

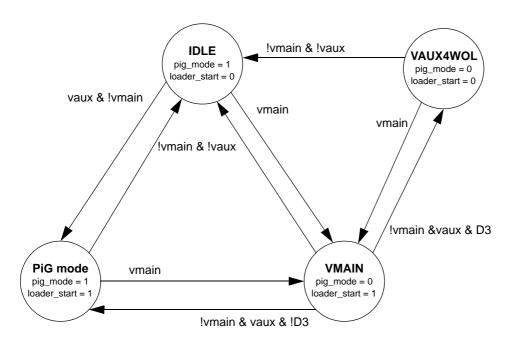
- The ASIC internal registers may be written with dword, word or byte accesses.
- If started, the loader reads subsequent entries starting with the initial value of the TWSI EEPROM Address Counter (see 3.2.4.12 TWSI EEPROM Control Register on page 79) as long as a valid key is found.
- Loading is started by finishing the SPI Flash Memory Loader state machine or by setting the Flag to start the TWSI EEPROM Loader (see 3.2.4.12 TWSI EEPROM Control Register on page 79).
- Loading the TWSI EEPROM via Flag in the TWSI EEPROM Control Register is intended for testing purposes only. It is not recommended to reload the Configuration Register File using this command.
- While loading, accesses to any resource of the network adapter are terminated by Target Retry Cycles.
- The transferred data after PERSTn in this way is limited to fulfill the requirements of PCI bus¹.
- This time consuming reading via TWSI bus may be deactivated by setting the Flag bit to stop (0) in the TWSI EEPROM Control Register see 3.2.4.12 TWSI EEPROM Control Register on page 79. Then the state machine does not even start reading values.
- Transformation of the TWSI EEPROM data (8 bytes) into multiple byte/dword memory read accesses from the
 - 32-bit read data is received via TWSI-Bus within one read access. Two read accesses are necessary to receive the full information for writing one internal register.
- Programming the TWSI EEPROM is described in chapter 2.5 TWSI EEPROM on page 22

Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S102130-00, Rev. --Document Classification: Proprietary Information

^{1.} T_{rhfa} PERSTn High to First configuration Access is limited to 2²⁵ clock cycles. PCI Express: 1s -> max. 2.8 KB

2.7 Plug In Go Unit

The Plug In Go unit decides wether to load normal configuration or PiG configuration by the SPI Flash Memory Loader.


Which configuration to select is dependent on the available voltages V_{main} and V_{aux} and if the device is in the D3 state.

The Plug in Go configuration is loaded by the SPI Flash Memory loader when V_{main} is no longer available but V_{aux} and the device is not in D3 state.

After a power on (both voltages not available) PiG configuration is loaded when only V_{aux} available. Else normal configuration is loaded by the SPI Flash Memory loader.

See figure below for the complete state description of the Plug in Go unit:

Figure 5: Plug in Go Unit State Diagram

loader_start = 1 causes the SPI Flash Memory loader to load the configuration once after entering the state

pig_mode = 0: normal configuration is loaded by the SPI Flash Memory loader

pig_mode = 1: Plug in Go configuration is loaded by the SPI Flash Memory loader

2.8 Interrupts

Chip internal interrupt handling is done with the following internal signals:

- irq is asserted when at least one of the unmasked interrupt sources is active (interrupt).
 When irq is not asserted, then none of the unmasked interrupt sources is active or internal interrupt masking line isr mask is active.
- isr_status is asserted (set to '1') when entering the interrupt service routine: "ISR mode".
 isr_status is deasserted (set to '0') when leaving the interrupt service routine: "normal mode".
- isr_mask shows if currently all interrupts are masked (regardless of interrupt mask register settings).

The two internal signals irg and isr_status show the current state of interrupt processing:

Table 16:	Interrupt Proc	Interrupt Processing Signals				

irq	isr_status	interrupt state	comment
0	0	idle	No interrupt request is pending
1	0	request	Interrupt pending, but not yet in process
0	1	processing	Interrupt is served but not yet fin- ished. All further interrupts masked

isr_status is used by the status BMU to accelerate the processing according to the threshold settings for the status FIFO during interrupt processing.

The **Interrupt Source Register** holds the interrupts of all resources (see chapter 3.3.2.4 Interrupt Source Register on page 130).

Each interrupt is maskable by the **Interrupt Mask Register** (see chapter 3.3.2.5 *Interrupt Mask Register* on page 131).

All unmasked interrupts are Or'ed and propagated to the internal interrupt line irq.

Interrupts generated by hardware checks are readable via the **Interrupt Hardware Error Source Register** (see chapter 3.3.2.6 Interrupt HW Error Source Register on page 131). Each interrupt is maskable by the **Interrupt Hardware Error Mask Register** (see chapter 3.3.2.7 Interrupt HW Error Mask Register on page 132). All unmasked interrupts are Or'ed and propagated to the **Interrupt Source Register** as **Interrupt Hardware Error**.

The interrupts from the MAC are readable from the **MAC Interrupt Source Registers** (see chapter 3.3.2.54 MAC Interrupt Source Register on page 201). Each interrupt is maskable by the **MAC Interrupt Mask Registers** (see chapter 3.3.2.55 MAC Interrupt Mask Register on page 202). All unmasked interrupts are Or'ed and propagated to the **Interrupt Source Register** as **MAC Interrupt.**

An interrupt from a masked source can still be read from its Source Register.

April 20, 2004, Advanced

An interrupt is cleared and/or disabled as stated in the description of the related interrupt resource.

The **Special Interrupt Source Registers** mirror the **Interrupt Source Register** with special functionality adapted to typical SW handling:

Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S102130-00, Rev. --

- Special Interrupt Source Register 1:
 - If the internal interrupt line **irq** is asserted, the read value is the same as in the **Interrupt Source Register**. If the internal interrupt line **irq** is NOT asserted, the read value is 0.
 - If the internal interrupt line <code>irq</code> is asserted, reading the <code>Special Interrupt Source Register 1</code> masks all interrupts. As a result the internal interrupt line <code>irq</code> is deasserted.
- Special Interrupt Source Register 2:
 - If the internal interrupt line **irq** is asserted, the read value is the same as in the **Interrupt Source Register**. If the internal interrupt line **irq** is NOT asserted, the read value is 0.
 - If the internal interrupt line **irq** is asserted, reading the **Special Interrupt Source Register 2** masks all interrupts and sets **isr_status** flag to "ISR mode". As a result the internal interrupt line **irq** is deasserted.
- Special Interrupt Source Register 3:
 - If the internal interrupt line **irq** is asserted, the read value is the same as in the **Interrupt Source Register**. If the internal interrupt line **irq** is NOT asserted, the read value is 0.
 - Reading the **Special Interrupt Source Register 3** always masks all interrupts. As a result the internal interrupt line **irq** is deasserted.
 - If the internal interrupt line irq is asserted, isr_status flag is set to "ISR mode".

Table 17: Effects on reading the Special Interrupt Source Registers

	Special	Special	Special
	Interrupt	Interrupt	Interrupt
	Source	Source	Source
	Register 1	Register 2	Register 3
Read value when irq asserted	Interrupt	Interrupt	Interrupt
	Source	Source	Source
	Register	Register	Register
Read value when irq not asserted	0	0	0
isr_status set to "ISR mode"	-	when irq is asserted	when irq is asserted
Masking of all interrupts	only, when irq is asserted	only, when irq is asserted	always
internal irq line	deasserted	deasserted	deasserted
	after-	after-	after-
	wards	wards	wards

All interrupts can be moderated by the IRQ Moderation Timer.

Moderation is controllable individually for each interrupt by the Interrupt Moderation Mask Registers.

There are two modes of signaling interrupts (internal interrupt line irq is active) to the host system:

Via Interrupt line INTAn: The internal signal irq is forwarded to the PCI signal INTA# (unless inhibited by register setting).

Doc. No. MV-S102130-00, Rev. -- CONFIDENTIAL Copyright © 2004 Marvell

Via MSI (Message Signaled Interrupt):
 The MSI agent notifies the interrupt via busmaster write to the defined host memory address.
 When leaving the ISR and all interrupt sources have been cleared, the MSI agent is in state idle and waits for new interrupts. If there are still active interrupt sources or a new interrupt source is set to active, irq is asserted again and the MSI agent is triggered for a new interrupt request.

The mode is selected with MSI Enable bit in MSI Message Control register.

2.8.1 IRQ Moderation Timer

The IRQ Moderation Timer (see chapter 3.3.2.29 IRQ Moderation Timer Registers on page 147) is a programmable 32-bit downcounter with a resolution of one core clock cycle (6.4 ns, $T_{max} = 21.47$ s) for the usage as time-base for IRQ Moderation.

The command Interrupt Moderation Timer Start loads Interrupt Moderation Timer with Interrupt Moderation Timer Init Value and starts counting down.

Reaching ZERO or loaded with ZERO the Interrupt Moderation Timer is reloaded with Interrupt Moderation Timer Init Value.

The Interrupt Moderation Timer controls the assertion of the internal interrupt line irq by gating the interrupts as defined by the Interrupt Moderation Mask Registers. If the Interrupt Moderation Timer is stopped or reaches ZERO, the gate opens and allows the masked interrupts to propagate to the bus. The assertion of irq has been caused by one of the masked interrupts, therefore delayed until the next time, the Interrupt Moderation Timer reaches ZERO. irq is kept asserted until the appropriate operation of clearing the interrupt request is completed. The deassertion of irq is not affected.

The Interrupt Moderation Timer may be stopped by the command Interrupt Moderation Timer STOP.

While **HW Reset** or **SW Reset** the **Interrupt Moderation Timer** is stopped and the gate is closed. After releasing **SW Reset** the gate is initially open until the **Interrupt Moderation Timer** is loaded with a value other than ZERO and started.

2.8.2 Message Signaled Interrupts (MSI)

Reporting interrupts to the host system via MSI is done, when the **MSI Enable** bit is set in **MSI Message Control** Register. Interrupt line INTA# is not used in this mode.

This chip is capable of handling one MSI message. This is specified also in the MSI control register.

The location for the MSI message is defined in register MSI Message Address Upper/Lower (64 bit). At this location within the host memory the interrupt message of the chip is written to.

The message itself is stored within register MSI message data register.

The MSI agent detects an active internal interrupt line **irq** and starts a busmaster write to the defined **MSI address** with the defined **MSI message data**.

The host system now detects a MSI message at the defined location and starts an interrupt service routine.

During the ISR all interrupts are masked.

After completion of the ISR the interrupts are unmasked again and the **irq** line is released in case of solving all interrupt reasons during the ISR. Otherwise the interrupt is signaled again to the host.

2.9 Buffer Management Units (BMU)

The Buffer Management Units are the interface for the Bus Interface Unit (BIU) to the queues.

The internal requests are presented as one for each queue.

Guaranteed length of transferable data is derived from the data provided by the BMU and the FIFO.

The Master Backends are also providing the multiplexers for positioning of data words at the right byte lanes on misaligned transfers and to revert byte ordering for descriptor words depending on **Rev Bytes Desc**.

The position of the multiplexers are controlled by the BMUs.

2.9.1 Format of Descriptor and Status List Elements

Communication between host and PCI device is done via interchanged list elements provided by the host within its memory space.

Chip internal descriptors can be modified via list elements and control functions are initiated or status information is reported.

All list elements of the different agents are based on the same structure (see figure below):

- Width of the list elements is always 64 bit
- Bit 63 is the own bit: it marks the ownership of the list element:
 - 1: the PCI device is owner of the list element
 - 0: the host is owner of the list element
- The following 7 bits (bit 62... bit 56) contain the opcode for this list element.

The opcode defines the meaning of the remaining fields of the list element.

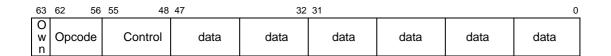

The different opcodes are assigned to the different tasks as follows:

Table 18: Opcode Assignments

Opcode (hex)	Task group
0x00 - 0x0f	not defined
0x10 - 0x1f	TCP Sum Parameter or Function
0x20 - 0x2f	Register Updates for RX and TX
0x30 - 0x3f	not defined
0x40 - 0x4f	DMA for RX and TX
0x50 - 0x5f	not defined
0x60 - 0x6f	Status List Functions
0x70 - 0x7f	Special Actions (e.g. put index)

- The control field (bit 55.. bit 48) specifies additional attributes of the list element
- The remaining 48 bits (bit 47.. bit 0) hold data according to the opcode and control information.

Figure 6: Base Format of the List Elements

The list elements of each task group are described in detail within the according chapters.

2.9.1.1 Receive Descriptor List Element

Figure 7 shows all different list elements processable by the RX BMU.

Figure 7: RX Descriptor List Element Definition

63	62 56	55 48	47 32	31 0
O w n	w Opcode control		buffer length	buffer address low dword
63	62 56	55 48	47 32	31 0
O w n	Opcode Buffer	control	buffer length	buffer address low dword
63	62 56	55 48	47 32	31 0
O w n	Opcode ADDR64	reserved	reserved	buffer address high dword
63	62 56	55 48	47 32	31 0
O w n	Opcode TCPPAR	reserved	reserved	TCP Start Sum 1 TCP Start Sum 2

The following opcodes are valid for RX descriptor list elements:

Table 19: RX descriptor list element valid opcodes

Opcode (hex) 7 bit	Opcode Name	Description of assigned list element
0x12	TCPPAR	Bits 31:0: TCP Sum Start Address 1 and 2
0x21	ADDR64	Bits 31:0: New value for the Buffer Address High Register of the RX BMU
0x40	Buffer	Follow up buffer for a packet Bits 55:48: buffer control bits Bits 47:32: buffer length Bits 31:0: buffer address low One buffer list element must be skipped on the start of a new packet. It enables a DMA request by the RX BMU to write receive data.
0x41	Packet	First buffer of a packet Bits 55:48: buffer control bits Bits 47:32: buffer length Bits 31:0: buffer address low A packet list element enables a DMA request by the RX BMU to write receive data.
other	not supported by RX BMU	Processing of list elements is stopped and an interrupt IRQ is asserted by BMU.

The Own bit signals the ownership of the list element:

- Own = 1: The PCI device is owner of the list element
- Own = 0: If Own = 0 in a list element detected by the BMU, it stops processing list elements and asserts an interrupt request IRQ.

The Control field defines attributes to the descriptor:

Table 20: Control Field Definitions

bit #	Control bit	Meaning (when set to 1)
7	reserved	
6	FRC_STAT	List element forces a burst of the Status FIFO
5:2	reserved	
1	CALSUM	Calculate checksum for this packet
0	reserved	

2.9.1.2 Transmit Descriptor List Element

Figure 8 shows all different list elements processable by the TX BMU. If not mentioned explicitly the ordering is little endian.

Figure 8: TX Descriptor List Element Definition

O pcode n Opcode Packet Control buffer length buffer address low dword 63 62 56 55 48 47 32 31 0 O pcode w Large In Send Control buffer length buffer address low dword 0 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 Co pcode n ceserved VLAN (big endian) reserved vLAN (big endian) buffer address high dword 63 62 56 55 48	63	62	56	55 48	3 47	32	31			0
O w Large Send Control Send buffer length buffer address low dword 63 62 56 55 48 47 32 31 0 O Opcode N Buffer Control Control Control Control Buffer length buffer address low dword 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 63 62 56 55 5 48 47 32 31 0 63 62 56 55 5 48 47 32 31 0 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 <td>W</td> <td></td> <td></td> <td>Control</td> <td></td> <td>buffer length</td> <td></td> <td>buffer addre</td> <td>ss low dword</td> <td></td>	W			Control		buffer length		buffer addre	ss low dword	
O w Large Send Control Send buffer length buffer address low dword 63 62 56 55 48 47 32 31 0 O Opcode N Buffer Control Control Control Control Buffer length buffer address low dword 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 63 62 56 55 5 48 47 32 31 0 63 62 56 55 5 48 47 32 31 0 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 <td></td>										
Name		_		55 48	3 47	32	31			0
O w n Opcode Buffer Control buffer length buffer address low dword 63 62 56 55 48 47 32 31 0 O Docode W ADDR64 reserved reserved buffer address high dword 0 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 63 62 56 55 48 47 32 31 0 O Docode W ADDR64 reserved VLAN (big endian) reserved vlan 0 O Opcode W ADDR64 reserved VLAN (big endian) buffer address high dword 0 63 62 56 55 48 47 32 31 0 O Opcode W LRGLEN n + VLAN reserved VLAN (big endian) reserved large send segment length	W	Large	,	Control		buffer length		buffer addre	ss low dword	
W Opcode Buffer Control buffer length buffer address low dword	63	62	56	55 48	3 47	32	31			0
O w ADDR64 reserved reserved buffer address high dword 63 62 56 55 48 47 32 31 0 O Opcode In Carden Pocket reserved reserved large send length 63 62 56 55 48 47 32 31 0 O Opcode In VLAN (big endian) reserved reserved 63 62 56 55 48 47 32 31 0 O Opcode In VLAN (big endian) reserved VLAN (big endian) 63 62 56 55 48 47 32 31 0 O Opcode In VLAN (big endian) buffer address high dword 63 62 56 55 48 47 32 31 0 O Opcode In VLAN (big endian) reserved large send segment length 63 62 56 55 48 47 32 31 0 O Opcode In VLAN (big endian) reserved large send segment length 63 62 56 55 48 47 32 31 0 O Opcode In VLAN (big endian) reserved TCP sum write	W			Control		buffer length		buffer addre	ss low dword	
Opcode reserved reserved buffer address high dword	63	62	56	55 48	3 47	32	31			0
O w LRGLEN reserved reserved reserved large send length 63 62 56 55 48 47 32 31 0 O Docode w ADDR64 n + VLAN reserved VLAN (big endian) reserved VLAN (big endian) buffer address high dword 63 62 56 55 48 47 32 31 0 O Opcode w LRGLEN n + VLAN reserved VLAN (big endian) buffer address high dword 0 O Opcode w LRGLEN n + VLAN reserved VLAN (big endian) reserved large send segment length 63 62 56 55 48 47 32 31 0 O Opcode w LRGLEN n + VLAN reserved (big endian) reserved TCP sum start TCP sum write	w			reserved		reserved		buffer addre	ss high dword	
O w LRGLEN reserved reserved reserved large send length 63 62 56 55 48 47 32 31 0 O Docode w ADDR64 n + VLAN reserved VLAN (big endian) reserved VLAN (big endian) buffer address high dword 63 62 56 55 48 47 32 31 0 O Opcode w LRGLEN n + VLAN reserved VLAN (big endian) buffer address high dword 0 O Opcode w LRGLEN n + VLAN reserved VLAN (big endian) reserved large send segment length 63 62 56 55 48 47 32 31 0 O Opcode w LRGLEN n + VLAN reserved (big endian) reserved TCP sum start TCP sum write										
N	63	62	56	55 48	3 47	32	31			0
O w n N N N N N N N N N N N N N N N N N N	W			reserved		reserved		reserved	large send length	
W N LAN Opcode VLAN reserved VLAN (big endian) reserved 63 62 56 55 48 47 32 31 0 O Opcode W ADDR64 n + VLAN reserved VLAN (big endian) buffer address high dword 63 62 56 55 48 47 32 31 0 O Opcode W LRGLEN n + VLAN reserved VLAN (big endian) reserved large send segment length 63 62 56 55 48 47 32 31 0 o o O Opcode W LRGLEN n + VLAN (big endian) reserved TCP sum init value (big endian) TCP sum start TCP sum write	63	62	56	55 48	3 47	32	31			0
O	W			reserved				reserved		
O	1				ı		II.			
W ADDR64 n reserved + VLAN VLAN (big endian) buffer address high dword 63 62 56 55 48 47 32 31 0 O Opcode W LRGLEN n + VLAN reserved (big endian) reserved segment length 63 62 56 55 48 47 32 31 0 CO Opcode W TCR LISW* lock number TCP sum init value (big endian) TCP sum start TCP sum write	_	_	_	55 48	3 47	32	31			0
O Opcode W LRGLEN reserved (big endian) Note	W	ADDR	64	reserved				buffer addre	ss high dword	
O Opcode W LRGLEN reserved (big endian) Note										
w LRGLEN reserved (big endian) reserved segment length 63 62 56 55 48 47 32 31 O Opcode W TCR LISW* lock number (big endian) TCP sum init value (big endian) TCP sum start TCP sum write	_			55 48	3 47		31			0
O Opcode lock number	W	LRGLE	N	reserved				reserved		
w Opcode lock number (big endian) TCP sum start TCP sum write	_63	62	56	55 48	3 <u>4</u> 7	32	31			0
				lock numbe	r			TCP sum start	TCP sum write	

*L, I, S, W stand for the fields. Not all are used.

The following opcodes are valid for TX descriptor list elements:

Table 21: Valid Opcodes for TX descriptor list elements

Opcode (hex) 7 bit	Opcode Name	Description of assigned list element
0x12	TCPS_	Load value from list element: Bits 31:16: TCP sum start address
0x16	TCP_IS_	Load value from list element: Bits 47:32: TCP sum init value Bits 31:16: TCP sum start address The byte order within the TCP sum init value is big endian: The MSB is in the lower byte (bit 7:0) and the LSB is in the higher byte (bit 15:8).
0x18	TCP L	Bits 55:48: lock this number of packets Set TCP lock for number of packets.
0x19	TCP LW	Bits 55:48: lock this number of packets Load value from list element: Bits 15:0: TCP sum write address Write TCP sum into this packet.
0x1B	TCP L_SW	Bits 55:48: lock this number of packets Load values from list element: Bits 31:16: TCP sum start address Bits 15:0: TCP sum write address Write TCP sum into this packet.
0x1F	TCP LISW	Bits 55:48: lock this number of packets. Load values from list element: Bits 47:32: TCP sum init value Bits 31:16: TCP sum start address Bits 15:0: TCP sum write address Write TCP sum into this packet. There are several TCP Parameter Opcodes, but not all combinations are valid. Valid combinations: TCP LISW, TCP L_SW, TCP L_W, TCP L, TCP _IS_, TCPS The byte order within the TCP sum init value is big endian: The MSB is in the lower byte (bit 7:0) and the LSB is in the higher byte (bit 15:8).
0x21	ADDR64	Bits 31:0: New value for the Buffer Address High Register of the TX BMU

Table 21: Valid Opcodes for TX descriptor list elements

Opcode (hex) 7 bit	Opcode Name	Description of assigned list element Bits 47:32: New value for VLAN Tag Register of the TX BMU The byte order within the VLAN Tag value is big endian: The MSB is in the lower byte (bit 39:32) and the LSB is in the higher byte (bit 47:40).				
0x22	VLAN					
0x23	ADDR64 + VLAN	Bits 47:32: New value for VLAN Tag Register of the TX BMU Bits 31:0: New value for the Buffer Address High Register of the TX BMU The byte order within the VLAN Tag value is big endian: The MSB is in the lower byte (bit 39:32) and the LSB is in the higher byte (bit 47:40).				
0x24	LRGLEN	Bits 15:0: MTU for TCP Segmentation				
0x26	LRGLEN + VLAN	Bits 47:32: new value for VLAN Tag Register of the TX BMU Bits 15:0: MTU for TCP Segmentation The byte order within the VLAN Tag value is big endian: The MSB is in the lower byte (bit 39:32) and the LSB is in the higher byte (bit 47:40).				
0x40	Buffer	Follow up buffer for a large send or normal packet Bits 55:48: buffer control bits Bits 47:32: buffer length Bits 31:0: buffer address low It triggers a DMA request by the TX BMU to read transmit data.				
0x41	Packet	First buffer of a normal packet: Bits 55:48: buffer control bits Bits 47:32: buffer length Bits 31:0: buffer address low A packet list element enables a DMA request by the TX BMU to read transmit data.				
0x43	Large Send	First buffer of a large send packet: Bits 55:48: buffer control bits Bits 47:32: buffer length Bits 31:0: buffer address low A packet list element enables a DMA request by the TX BMU to read transmit data.				
other	not supported by TX BMU	Processing of list elements is stopped and an interrupt IRQ is asserted by BMU.				

The Own bit signals the ownership of the list element:

- Own = 1: The PCI device is owner of the list element
- Own = 0: If Own = 0 of a list element detected by the BMU, it stops processing list elements and asserts an interrupt request IRQ.

The Control field defines attributes to the descriptor:

Table 22: Control Field definition attributes to the descriptor

bit #	Control bit	Meaning (when set to 1)				
7	EOP	Descriptor is last one of a packet				
6	FRC_STAT	Descriptor forces a TX Status Element in the Status FIFO				
5	INS_VLAN	Insertion of VLAN Tag from TX VLAN Tag Register into packet				
4	LOCKSUM	Start of lock packet sequence (number of packets stored in lock register). To be set only for the first packet of a lock sequence to accept value from internal lock register (lock number value transmitted with last TCP_LISW list element). The number of locked packets is put in the Rambuffer subsequently.				
3	INITSUM	Start checksum calculation new for this packet and use value of init register for initialization of checksum calculation.				
2	WRITESUM	Write checksum value to this packet at write position.				
1	CALSUM	Calculate checksum for this packet				
0	UDPTCP	Calculate UDP checksum for this packet Calculate TCP checksum for this packet				

2.9.1.3 Status List Element

Figure 9 shows all different list elements processable by the Status BMU.

Figure 9: Status List Element Definition

63	62 56	55	48	47	32	31				0
O w n	Opcode RX Status	Link		RX Frame Lengt little endian	h	F	RX Frame Stat little endi		rd	
63	62 56	55	48	47	32	31				0
O w n	Opcode RX Time- stamp	Link		(VLAN Tag) big endian			RX Frame Tim little endi		p	
63	62 56	55	48	47	32	31				0
O w n	Opcode RX VLAN	Link		VLAN Tag big endian			reserve	d		
63	62 56	55	48	47	32	31				0
	Opcode TCP Sum (+VLAN)	Link		(VLAN Tag) big endian			sum 2 endian		TCP sum 1 big endian	
63	62 56	55	48	47	32	31				0
O w n	Opcode RSS Hash	Link		reserved	T C P		RSS Hash v little endi			
63		55	48	47	32	31				0
O w n	Opcode TX Index	reserve	d	TXS2 Done	TX	A2 Done	TXS1 Dor	ne	TXA1 Done	

The following opcodes are valid for Status list elements:

Table 23: Valid Opcodes for Status List Elements

Opcode (hex) 7 bit	Opcode Name	Description of assigned list element
0x60	RX Status	Generated by the RX BMU for each packet: Bits 55:48: Link number Bits 47:32: RX frame length Bits 31:0: RX status word
0x61	RX Timestamp	Generated by the RX BMU for each non-VLAN packet, if the timestamp timer is enabled and RSS disabled ¹ : Bits 55:48: Link number Bits 31:0: RX timestamp
0x62	RX VLAN	Generated by the RX BMU for each VLAN packet and the timestamp timer and check summing is disabled: Bits 55:48: Link number Bits 47:32: VLAN Tag The byte order within the VLAN Tag value is big endian: The MSB is in the lower byte (bit 39:32) and the LSB is in the higher byte (bit 47:40).
0x63	RX Timestamp + RX VLAN	Generated by the RX BMU for each VLAN packet and the timestamp timer is enabled and RSS is disabled: Bits 55:48: Link number Bits 47:32: VLAN Tag Bits 31:0: RX timestamp The byte order within the VLAN Tag value is big endian: The MSB is in the lower byte (bit 39:32) and the LSB is in the higher byte (bit 47:40).
0x64	TCP Sum	Generated by the RX BMU for each non VLAN packet, if checksumming is enabled Bits 55:48: Link number Bits 31:16: TCP Sum 2 Bits 15:0: TCP Sum 1 The byte order within the TCP Sum is big endian: The MSB is in the lower byte (bit 7:0) and the LSB is in the higher byte (bit 15:8).
0x65	RX RSS Hash	Generated by the RX BMU for each packet, if RSS Hash calculation is enabled) Bits 55:48: Link number Bit 33: TCP Flag Bit 32: IP Flag Bits 31:0: RSS Hash value

Table 23: Valid Opcodes for Status List Elements

Opcode (hex) 7 bit	Opcode Name	Description of assigned list element
0x66	TCP Sum + VLAN	Generated by the RX BMU for each VLAN packet, if check- summing is enabled Bits 55:48: Link number Bits 47:32: VLAN Tag Bits 31:16: TCP Sum 2 Bits 15:0: TCP Sum 1 The byte order within the TCP Sum is big endian: The MSB is in the lower byte (bit 7:0) and the LSB is in the higher byte (bit 15:8). The byte order within the VLAN Tag value is big endian: The MSB is in the lower byte (bit 39:32) and the LSB is in the higher byte (bit 47:40).
0x68	TX Index	If an Status Burst is scheduled and at least one of the TX Done indices differs from its TX Report Index, a TX Index LE is appended as last LE in the Status Burst. Bits 31:25: TXS2 Done Index Bits 24:16: TXA2 Done Index Bits 15:8: TXS1 Done Index Bits 7:0: TXA1 Done Index
other	not supported by Status BMU	

Note, that RX RSS Hash LE and Timestamp LE can only be generated exclusively. As long as the RSS Hash feature is enabled, no Timestamp LE is generated.

2.9.1.4 Special Action List Elements

Figure 10 shows all different special action list elements.

Figure 10: Special Action List Elements

Page 38

63	62 56	55	48	47 44	43 32	31 28	27 16	15 12	11 0
0	Opcode								
w	Put	Link		res.	RX Put Index	res.		res.	TXA Put Index
n	Index								

The following opcodes are valid for special action list elements:

Table 24: Valid Opcodes for Special Action List Elements

Opcode (hex) 7 bit	Opcode Name	Description of assigned list element
0x70	Put Index	List element for Hardware Polling Unit: Bits 55:48: Link number Bits 47:44: reserved Bits 43:32: RX Put Index Bits 31:28: reserved Bits 27:16: TXS Put Index Bits 15:12: reserved Bits 11:0: TXA Put Index
other	not defined yet	

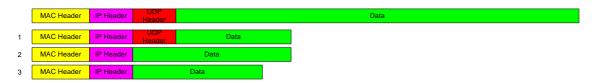
2.9.2 TCP/UDP Processing of RX and TX BMU

TCP checksum may be calculated by RX and TX BMU for the processed packet.

2.9.2.1 TCP checksum in RX direction

In RX direction two TCP Checksums may be calculated from two different configurable start positions (refer to 3.3.2.41 *BMU Registers for Receive Queues* on page 158 and 2.9.1.1 *Receive Descriptor List Element* on page 30).

2.9.2.2 TCP/UDP checksum for single packets in TX direction


In TX direction TCP or UDP checksum may be calculated.

The control bit UDPTCP must be set accordingly. Init Value, Start address and Write address are defined for the TCP/UDP Sum. Store and Forward (St&Fwd) and Calculate TCP/UDP Sum for this buffer/packet must be set.

2.9.2.3 UDP checksum for fragmented packets in TX direction

When large UDP packets are split into several smaller packets. UDP Checksum is calculated for the original large packet. Therefore the UDP is calculated over the data areas of several small packets and the resulting checksum is inserted within the UDP header field of the first packet. The address for the insertion of the checksum is loaded explicitly and is not updated automatically by a new packet start.

Figure 11: UDP checksum across several packages

The software can handle the several packets belonging to one UDP checksum processing in two order modes. The packets are handled in the original order to the hardware or they are transferred starting with packet number 2 up to the last of the sequence and terminated by the first one.

UDP processing for packets in original order (1, 2,..., n):

- Set TCP Lock for n packets, which inhibits transmission of the next n packets coming in.
- Set TCP Sum Write: remember the RAM Buffer Address, where to write the TCP Sum.
- Set TCP Sum Init: initialize the Checksum Adder with a start value.
- Set TCP Sum Start: set the start address for checksum calculation for the 1st packet.
- Buffer with 1st packet: calculate checksum with current parameters.
- Set TCP Sum Start: set the start address for checksum calculation for the 2nd and following packets.
- Buffer with 2nd and following packets: calculate checksum with current parameters.
- EOF of last packet clears TCP Lock, writes checksum to first packet and allows transmission of all packets.

In this case the packets can be sent after the checksum was calculated including the last packet.

UDP processing for packets in "Vendel" order (2,..., n, 1):

- Set TCP Sum Init: initialize the Checksum Adder with a start value, when control bit initsum is set to '1' for the current packet.
- Set TCP Sum Start: set the start address for checksum calculation for the 2nd and following packets.
- Buffer with 2nd and following packets: calculate checksum with current parameters.
- Packets are sent immediately after complete reception (2.. n).
- Set TCP Sum Write: remember the RAM Buffer Address, where to write the TCP Sum. For the last transmitted packet (number 1) the control bit writesum must be set to '1'.
- Set TCP Sum Start: set the start address for checksum calculation for the 1st packet.
- Buffer with 1st packet: calculate checksum with current parameters.
- EOF of packet 1 clears TCP Lock, writes checksum to packet 1 and allows transmission of packet 1.

In the "Vendel" case the packets can be sent just after receipt and the calculated checksum is inserted in packet 1, which is received and transmitted last.

2.9.3 Prefetch Unit

Each RX or TX FIFO has its own prefetch FIFO. This block occurs two times per link:

- RX Prefetch Unit
- TX Prefetch Unit

The Prefetch Unit does intelligent prefetching of list elements for a BMU.

The host software may update the according Put Index Register continuously to trigger the prefetch of new list elements completely automatically.

Alternatively the Put Index value is polled continuously by the HW Polling Unit out of a software defined memory location and the Put Index Register of the Prefetch Unit is updated by the HW Polling Unit.

A prefetch of new list elements is started whenever Put Index Register differs from Get Index Register and there is at least the minimum free space left in the Prefetch FIFO. The number of new list elements which are to be prefetched is calculated (Put Index - Get Index and minimum free space of Prefetch FIFO).

The Prefetch FIFO is written by the BIU and read by the BMU.

It works fully synchronously to the BIU Master Interface and the associated BMU.

It is controlled by the following parameters and variables:

Table 25: Prefetch Control Parameter and Variables

Name	Description
List Start Address Low & High	64 bit pointer to the beginning of the Descriptor List within the host buffer. Defined by software during queue initialization.
List Length	Size of the Descriptor List area in bytes. Defined by software during queue initialization.
Get Index	Pointer to the next list element, which is to be prefetched. Defined by software during queue initialization. Updated automatically on each prefetch burst.
Get Length	Number of list elements which may be prefetched by the next prefetch burst. Number = Put Index - Get Index Limitation: a guaranteed minimum space must be left free within the prefetch FIFO.
Put Index	Pointer to the last list element put by host software. Either written by host software each time new list elements haven been added to the descriptor list, or automatically updated by a Put Index Poll Request in HW Polling Mode.
FIFO Read Pointer	Read Address for FIFO memory Updated automatically when BMU proceeds to the next list element.
FIFO Write Pointer	Write Address for FIFO memory Updated automatically on each prefetch burst. Related closely to the Get Index.
FIFO level	FIFO filling level. Base for trigger condition for polling and prefetch bursts.

2.9.4 Status BMU

The status BMU handles information flow between hardware and host software.

This is done with a status list area within the host memory space. This area is provided by the software and must be large enough for the reception of status information about a number of packets for the two receive and transmit

queues. There is no hardware mechanism to prevent the Status BMU from overwriting previous status list elements before they are processed by the host software.

The status list is write only for the hardware.

The host software resets the own bits of the list elements it has already processed to prevent wrapping around the list.

All RX Status list elements concerning the same packet are kept together. They are put to the list in the following order (ascending opcode):

- RX Checksum (+VLAN) if checksumming is enabled
- RX VLAN, if VLAN packet and previous LEs did not comprise VLAN.
- RX Status: The list element holding RX status word is always the last within this block.

The Status BMU is controlled by the following parameters and variables:

Table 26: Status BMU Control Parameters and Variables

Name	Description
List Start Address Low & High	64 bit pointer to the beginning of the Descriptor List within the host buffer. Defined by software during queue initialization.
List Length	Size of the Descriptor List area in bytes. Defined by software during queue initialization.
TXA Report Index	Last reported TX done index for the transmit queues
TX Index Threshold	Threshold for initiating a status burst
Put Index	Pointer to the next free list element in the host memory descriptor list area. If Put Index and Get Index are equal no element is in the FIFO.
FIFO Read Pointer	Read Address for FIFO memory Updated automatically on each status burst.
FIFO Write Pointer	Write Address for FIFO memory
FIFO watermark	FIFO watermark for initiating a status burst.
FIFO ISR watermark	FIFO watermark for initiating a status burst during ISR.
Level Timer	If the status FIFO is not empty the Level Timer is started. When expired a status burst is triggered
TX Timer	The timer is started when the TX Done Index differs from its TX Request Index. When expired a status burst is triggered.
ISR Timer	During ISR the ISR Timer is used instead of the Level Timer.

If one of the TX Done conditions is fulfilled, a TX Index list element is appended as last list element in the Status Burst.

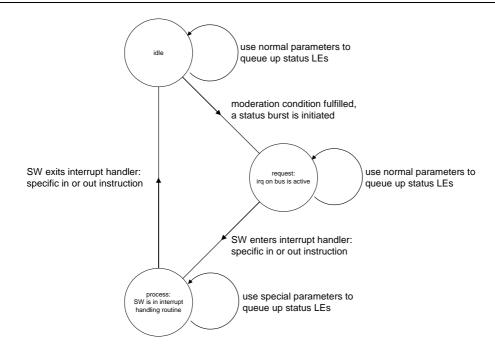
A burst to the status list affects the following registers and timers:

• TX Report Index = TX Done Index for the TX queues

After the burst to the status list an interrupt Status List is asserted. Bit **Status BMU** in **Interrupt Source Register** is asserted.

If new list elements reach the Status FIFO before software starts interrupt processing, they are queued up in the FIFO. As soon as software starts interrupt processing (e.g. clears IRQ Mask register) the Status FIFO uses other moderation parameters: The Level Timer is replaced by an ISR Timer, that is set by software to expire shortly before the expected leaving of the ISR (Interrupt Service Routine). The watermark is replaced by the ISR watermark, which triggers bursts earlier while software is in the ISR. This way the Status BMU FIFO is kept empty and all queued and newly incoming list elements are forwarded to the BIU as soon as possible.

The TX Done Index of the TX queue is connected to the Status BMU. The Status BMU maintains a TX Report Index for the TX queue holding the last state of the TX Done Index last reported to the host.


A TX Index Timer is set to its initial value and started each time one of the TX Done Index differs from its TX Report Index. It is stopped and reset to ZERO when the TX Report Index is updated.

Each time one of the Done Index differs from its Report Index and the difference is higher than the TX Index Threshold or the TX Timer expires, a Status Burst request is asserted to the Status BMU.

During the processing of a Status burst, new list elements may be queued up and they are also sent within an immediately following burst (burst size and timer values are lower than for normal burst requests; see Figure 12: *Status Interrupt Moderation*). The TX Index list element will be appended to the last element of the last status burst. Right before being appended the states of the TX Done Index is sampled and inserted into the TX Index list element and the TX Done Index is copied to the according TX Report Index.

Figure 12: Status Interrupt Moderation

Document Classification: Proprietary Information

2.9.5 Polling Unit

The Polling Unit is used to automatically update the Put Index Registers of the BMUs.

It runs synchronously to the BIU Master Interface and all BMUs.

It is a read only agent on the BIU's request interface.

The Put Indices and their enable bits for all BMU descriptor lists are stored in a contiguous memory area within the host buffer which is formally organized as two list elements.

The Polling Unit reads always both list elements at once and the values are stored in an internal register bank. If the Enable bit of the Put Index is set, the value is forwarded directly to the according BMU without using the target bus.

Each time the Descriptor Poll Timer expires a Poll Request is initiated.

The Descriptor Poll Timer runs with clk_core to have a fixed timebase.

For testing a Poll Request can be started by software via Poll Control Register.

The Polling Unit is controlled by the following parameters and variables:

Table 27: Polling Unit Control Parameters and Variables

Name	Description
Poll Start Address Low & High	64 bit pointer to the beginning of the Descriptor List within the host buffer. Defined by software during Polling Unit initialization.
Last Index	Index of the last list element to poll. Fixed by hardware to 1. Two list elements are read always.
Poll Control	Control bits for Polling Unit: Reset/Enable Operational On/Off do_poll: command for polling

A check interrupt is generated on one of the following reasons:

- the received list element has the OWN bit (bit 63) not set.
- the received list element has a wrong opcode.
- · at least one byte enable is not set for the received list element

The interrupt is cleared by software with setting the Clear IRQ bit in the Poll Control Register

2.10 Timer

The **Timer** is a programmable 32-bit downcounter with a resolution of 8 ns (derived from core clock) for the usage as a fixed timebase.

The command Timer Start loads Timer with Timer Init Value and starts counting.

Reaching ZERO or loaded with ZERO the **Timer** generates an interrupt **IRQ Timer** and is reloaded with **Timer Init Value**.

IRQ Timer is cleared by the command Timer Clear IRQ.

Command Timer Clear IRQ overrides a concurrent internal interrupt (guaranteeing IRQ edges).

Note

In order to prevent IRQ pulses, command **Timer Clear IRQ** should only be issued, if **IRQ Timer** is pending or if the **Timer** is stopped.

The Timer may be stopped by the command Timer STOP.

Testing:

Test mode is switched on/off by the command **Timer Test On/Off**. In test mode, clock pulses may be generated by software command **Timer Step**.

2.11 Timestamp Timer

The **Timestamp Timer** is a programmable 32-bit up counter with a resolution of 8 ns (derived from core clock) for the usage as a time base for time stamping the receive frames.

The command **Timestamp Timer Start** starts counting (from its current value).

Wrapping from 0xffffffff to ZERO or loaded with ZERO, the **Timestamp Timer** generates an interrupt **IRQ Timestamp Timer**.

IRQ Timestamp Timer is cleared by the command Timestamp Timer Clear IRQ. Command Timestamp Timer Clear IRQ overrides a concurrent internal interrupt (guaranteeing IRQ edges).

The Timestamp Timer may be stopped by the command Timestamp Timer STOP.

Testing:

Test mode is switched on/off by the command Timestamp Timer Test On/Off.

In test mode, clock pulses may be generated by software command Timestamp Timer Step.

2.12 Wake on LAN

Via PME line the host system can be woken by the PCI device, when a wake up event is detected on the LAN interface. This may be done for all three operation modes 10/100/1000.

The Wake on LAN feature uses three mechanisms to create a wake up event:

- Wake up Frame: Incoming packets are compared to several patterns stored in a RAM. A match causes a wake
 up event.
 - Magic Packet frame detect: The incoming data stream is searched for a so called "magic packet frame" that consists of 6 bytes of 0xFF followed by 16 iterations of the device's MAC address. If this sequence is found, a wake up event is created.
- Link Change monitoring: Any change of the link status causes a wake up event.

2.12.1 Wake up Frame Logic

The Wake up Frame Logic consists of a Pattern RAM, a receive data register, length counters and compare logic for each pattern to compare and a statemachine that parses the incoming data stream for start and end of packet. A control register holds bits to enable and configure the Wake up Frame logic and a status register holds bits that show the result of the matching process.

The complete set of available registers is described in chapter 3.3.2.57 Wake on LAN Control Registers on page 203. The representation of the pattern RAM to the software can be found in chapter 3.3.2.58 Pattern RAM on page 208.

The Wake up Frame Logic is run with the MAC's receive clock (same as the MAC RX FIFO).

The Pattern RAM is a Single Port SRAM of 64 words by 128 bits. Under WOL working condition the RAM port is used by the compare logic to read out the patterns for comparison. To access the RAM from the PCI bus by target read or target write to set up the patterns the WOL unit must be set to inactive before (bit 1:0 to 0b01 of WOL Control Register).

Figure 13: Organization of Pattern RAM

Byte # /addr.	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	mask byte 1	pat 6, byte 1	pat 5, byte 1	pat 4, byte 1	pat 3, byte 1	pat 2, byte 1	pat 1, byte 1			pat 6, byte 0	pat 5, byte 0		pat 3, byte 0		pat 1, byte 0	pat 0, byte 0
	mask byte 3	pat 6, byte 3	pat 5, byte 3	pat 4, byte 3			pat 1, byte 3	pat 0, byte 3		pat 6, byte 2	pat 5, byte 2		pat 3, byte 2		pat 1, byte 2	pat 0, byte 2
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	mask byte 127	pat 6, byte 127	pat 5, byte 127	pat 4, byte 127	pat 3, byte 127	pat 2, byte 127	pat 1, byte 127	pat 0, byte 127	mask byte 126	pat 6, byte 126	pat 5, byte 126		pat 3, byte 126	pat 2, byte 126	pat 1, byte 126	pat 0, byte 126

The Pattern RAM holds 7 Patterns of up to 128 Bytes each. Each data word consists of two bytes of each Pattern on byte 0 .. 6 and byte 8 .. 14, while bit 0..6 of byte 7 and byte 15 are used as mask bits to enable the comparison of the current byte for each pattern. Bit 0 of byte 7 enables the comparison of Byte 0 with the current lower byte of the packet, Bit 1 enables comparison of Byte 1 and so on.

The receive data register clocks in the receive data coming from the MAC or the internal loopback path. It is 32 bits wide and samples rx_data each time rx_data_valid is asserted. To serialize the words for comparison with the pattern words a word counter controls a word wide multiplexer that puts words 0..1 of the received dword in two consecutive clock cycles to the compare logic. At Gigabit speed each 2 clock cycles a new dword arrives. At 100 Mbit and 10 Mbit speed each 8 clock cycles a new dword arrives. The word counter starts in the clock cycle after rx_data_valid is asserted with count 0b00 and stops after 2 clock cycles, if not restarted by another rx_data_valid.

The pattern pointer is used as read address at the read only port of the Pattern RAM. It is reset to zero at SOP and incremented by two each time the word counter is incremented.

The Pattern Match Statemachine controls the pattern match operation by initializing the match logic on SOP and enabling compare logic between SOP and EOP. It also controls the sampling of the receive data in the receive data register to avoid sampling of the receive status word.

The compare logic consists of 7 identical instances of the following components:

- A pattern length register holds the length of the pattern. It is initialized by SW.
- A pattern length counter is loaded at SOP from the pattern length register and is decremented by two each
 time the word counter is incremented. As soon as the pattern length counter for a pattern reaches zero, it signals the end of the pattern match operation. It can be read and written by SW for test purposes only.
- · A word-wide comparator compares the received word to the current word of the pattern.
- A flip-flop signals matching data. It is set at SOP and reset as soon as the comparator signals a mismatch and
 the pattern mask bit for the current pattern byte is set. Also it is reset, if the byte enable for the current byte is
 not set, but the pattern mask bit is set. If the pattern mask bit for the current byte is not set, the byte is not compared, but treated as matching.
- A flip-flop signals the result of the pattern match operation. It is reset at SOP and samples the state of the
 matching data flag as soon as the complete pattern has been compared. If EOP is signaled, before the pattern
 length counter has expired, this flip-flop remains reset and the pattern does not match. It can be read out in the
 Status Register.

The Control/Status Register contains the following control bits:

- A radio button to enable/disable the Wake up Frame Logic. If disabled, all flip-flops, flags and counters of the
 Wake up Frame Logic are reset to zero. The pattern length registers and the other control bits can be set while
 the Wake up Frame Logic is disabled.
- A control bit to clear the result status bits for all patterns by SW.
- A control bit for each pattern to enable/disable comparison of incoming packets with the corresponding pattern.
- A status bit for each pattern to show the result of the last pattern match operation.

For writes first the lower three words of the 128 bit pattern word have to be written to the Pattern RAM Data Registers, then the upper 32 bits are written to the fourth Pattern RAM Data Register. In the clock cycle after the fourth Pattern RAM Data Register has been written, the complete 128 bit pattern word is written to the according Pattern RAM location.

On reads data is read directly out of the Pattern RAM. All four dwords are updated simultaneously.

2.12.2 Magic Packet frame detect

Magic Packet frame detect: The incoming data stream is searched for a so called "magic packet frame" that consists of 6 bytes of 0xFF followed by 16 iterations of the device's MAC address (see chapter 3.3.2.57 Wake on LAN Control Registers on page 203). If this sequence is found, a wake up event is created.

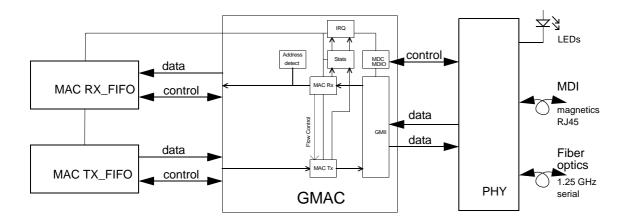
Note: Nevertheless the incoming packet must have a valid destination address or multicast address.

2.12.3 Link Change Monitoring

Link Change monitoring: Change of the link status from down to up causes a wake up event.

2.13 GMAC

The Gigabit Ethernet functionality is realized with an integrated GMAC module provided by Marvell in combination with the PHY module.


All registers of the GMAC are accessible by the CPU and are mapped into the I/O address space **GMAC Registers**.

The reset line /RESET of the GMAC is controlled by GMAC Reset.

The GMAC runs at core clock (clk_host, 125 MHz).

The interfaces to the rx and tx FIFOs have their own rx_clk and tx_clk.

Figure 14: GMAC and PHY integration

Page 50

2.14 PHY

The PHY module is based on IP (Alaska 88E1111) provided by Marvell. (For detailed information, refer to "88E1111 Integrated 10/100/1000 Gigabit Ethernet Transceiver", Marvell, Doc. No. MV-S100649-00).

2.15 LEDs

The 88E8053 device supports 4 LED signals. All LEDs can be driven via register settings. The GPHY internal four LED lines can be driven in different modes (for detailed information, refer to "88E1111 Integrated 10/100/1000 Gigabit Ethernet Transceiver", Marvell, Doc. No. MV-S100707-00). List of all supported LED lines by the 88E8053 device:

LED_ACTn, LED_LINK10/100n, LED_LINK1000n, and LED_LINK

2.15.1 LED Capabilities of 88E8053

All PHY controlled LEDs may also be controlled directly by software (refer to "88E1111 Datasheet, Integrated 10/100/1000 Gigabit Ethernet Transceiver", Marvell, Register 24 and Register 25).

2.15.1.1 Speed LEDs

The LED_LINK10/100n, LED_LINK1000n, and LED_LINKn pins are controlled by PHY.

The LED_LINK10/100n pin is the parallel LED output for 100BASE-T link or speed. The LED_LINK10/100n pin indicates 100 Mbps link or speed if active.

The LED_LINK1000n pin is the output for 1000BASE-T link. The LED_LINKn pin is the parallel output for 10/100/1000BASE-T link.

2.15.1.2 Link LED

The LED_Link pin is controlled by the PHY.

(For detailed information refer to the 99E1111 Datasheet, Integrated 10/100/100 Gigabit Ethernet Transceiver, Marvell®, Register 24: LED Control and LED Interface).

2.16 VPD

The network adapter implements VPD as suggested by PCI Rev. 2.3. It is stored in a TWSI EEPROM (or in the SPI Flash Memory) and may be accessed through the **VPD Address Register** and **VPD Data Register**. These registers are mapped writable both in configuration and I/O address space.

For detailed description of the TWSI EEPROM see chapter 2.5 TWSI EEPROM on page 22.

In absence of the TWSI EEPROM VPD is stored within the SPI Flash Memory. Then the VPD cannot be reprogrammed during operation of the device, because rewriting of the SPI Flash Memory is done by sector erase (32 kB).

2.17 TWSI Interface

The TWSI interface is controlled either by SW via the **Interface Register** or by HW via the **TWSI Control Register** and **TWSI Data Register**. If HW controlled TWSI accesses are used, the **Interface Register** must be set to inactive values (Clock = 1, Direction = 0, Data = 0).

The HW controlled Interface can be parameterized in several ways. The size of the target device of the TWSI access (and implicit the number of address bytes/bits to be used) and its devsel byte must be written together with the address to the **TWSI Control Register**. If the **TWSI Burst** bit is set, the TWSI Interface runs 4 byte bursts in page mode, assuming pages of 8 bytes. Invalid or erroneous HW controlled TWSI accesses that don't complete, can be stopped by writing a 1 to **TWSI Stop**. On completion of a HW controlled TWSI access an interrupt **IRQ TWSI Ready** is asserted.

2.18 Parity Generation/Check

PCI parity checking/generating follows PCI Specification as even parity on dwords.

2.18.1 Internal byte based parity checking/generating

Byte based parity is generated on data entering the PCI Transmit FIFOs and on data entering the MAC Receive FIFOs. For Internal Status words written to the RAM, parity is generated by the RAM interface.

Byte based parity is checked on data leaving the PCI Receive FIFOs and on data leaving the MAC Transmit FIFOs. Parity is also checked on data read from the RAM.

Each parity checker generates an Interrupt. All parity Interrupts are routed to the **Interrupt HW Error Source Register**.

NOTE: Even if an **Interrupt Parity Error** is generated, running operations are continued.

Parity on the PCI bus is generated, checked and reported following the PCI specification.

2.18.2 Parity Checking/Generating on PCI as target

Read data parity is generated for all read accesses to device resources (SPI Flash Memory, ASIC-Registers) in the ASIC.

Write data parity is checked for all write accesses to device resources (SPI Flash Memory, ASIC-Registers) in the ASIC.

Address parity is checked for all address phases running on the bus.

If a write data parity error is detected, **Parity Error** is set. Status register bit (Offset: 0x06, page 60) **PERR#** is asserted, if **Parity Report Response Enable** is set.

If an address parity error is detected, **Parity Error** is set. Status register bit (Offset: 0x06, page 60) **SERR#** is asserted and **Signaled Error** is set, if **SERR# enable** and **Parity Report Response Enable** are set.

2.18.3 Parity Checking/generating on PCI as master

Write data parity is generated for all write accesses to system memory.

Read data parity is checked for all read accesses from system memory.

Address parity is generated for all address phases generated on the bus.

If a read data parity error is detected, **Parity Error** is set. Status register bit (Offset: 0x06, page 60) **PERR#** is asserted and **Data Parity Error detected** is set, if **Parity Report Response Enable** is set.

If PERR# is sampled asserted on a write access, Parity Error is set. Data Parity Error detected is set, if Parity Report Response Enable is set.

If Data Parity Error detected is set, interrupt IRQ Master Error is set.

If Parity Error is set, interrupt IRQ Status is set (see also Interrupt Register).

Section 3. Register Description

3.1 Legend

Throughout this document frame and packet (also STF and STP) are used synonymously.

Dword stands for double word (4 bytes).

Qword stands for quadruple word (8 bytes).

Register descriptions

The following conventions are valid for register descriptions:

- Write:
 - ne = no effect (read only register)
 - yes = writable
 - sh = special handling as described
 - exec = execution of this command, if appropriate bit is set
 - ITO = writable during initialization and for tests only
 - TO = writable for tests only
- Read:
 - aw = as written
 - value = as defined by itself
 - given number (fixed values typically)

Commands (single bit) in Control Registers:

The following conventions are valid for commands in control registers:

- Commands are executed, if appropriate bit is set
- Read value as defined.

Exclusive commands (xxx Start/Stop, xxx On/Off):

The following conventions are valid for exclusive commands:

- Commands are executed, if appropriate bit is set to 1.
- Setting both commands to 1, has no effect.
- Status is readable: 0b01 or 0b10.
- Reset Value:
 -
 <blank> = fixed value or value directly from input pin
 - <value> = reset to <value> only by Power on and HW Reset
 - <value> (HW) = reset to <value> only by Power on and HW Reset
 - <value> (SW) = reset to <value> by Power on, HW Reset and SW Reset

Doc. No. MV-S102130-00, Rev. --CONFIDENTIAL Copyright © 2004 Marvell Document Classification: Proprietary Information April 20, 2004, Advanced Reserved registers are still empty within the address space.

Reserved (legacy) registers are not used within this applications but have to be left empty due to former SW compatibility.

3.2 PCI-Express Configuration Register File

The Configuration Register File is mapped into the Control Register File block 7 (only first 128 Bytes) and entirely at blocks 56 up to 60.

3.2.1 Overview and Address Map

The table below depicts the layout of the configuration space.

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Address		
	Header	Region				
Devi	ce ID	Vend	lor ID	0x00		
Sta	atus	Com	mand	0x04		
	Class Code		Revision ID	0x08		
BIST	Header Type	Latency Timer	Cache Line Size	0x0c		
	Base Address (1st)/Lower					
	Base Addres	s (1st)/Upper		0x14		
	Base Add	ress (2nd)		0x18		
	Reserved (Unuse	ed Base Address)		0x1c		
	Reserved (Unuse	ed Base Address)		0x20		
	Reserved (Unuse	ed Base Address)		0x24		
	Rese	erved		0x28		
Subsy	stem ID	Subsystem	Nendor ID	0x2c		
	Expansion Ron	n Base Address		0x30		
	Reserved		New Cap Ptr	0x34		
	Rese	erved		0x38		
Max_Lat	Min_Gnt	Interrupt Pin	Interrupt Line	0x3c		

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Address	
	Device Depe	ndent Region			
	Our Re	gister 1		0x40	
	Our Re	gister 2		0x44	
PM Capabilities		Next Item Ptr	PM Cap ID	0x48	
PM Data Reg	Reserved	PM Cont	rol/Status	0x4c	
VPD Add	ress Register	Next Item Ptr	VPD Cap ID	0x50	
	VPD Data	a Register		0x54	
TWSI EEPROM Lo	pader Control Register	Rese	erved	0x58	
MSI Mes	sage Control	Next Item Ptr	MSI Cap ID	0x5c	
	MSI Message A	Address (Lower)		0x60	
	MSI Message A	Address (Upper)		0x64	
Re	served	MSI Mess	0x68		
PCI-X Com	mand Register	Reserved	PCI-X Cap	0x6c	
	PE S	Status		0x70	
Calibration	Status Register	Calibration Co	ontrol Register	0x74	
Reserved	Retry Counter	Discard	Counter	0x78	
	Our Statu	s Register		0x7c	
	Rese	erved		0x80:dc	
	PCI Expres	s Capability			
PE Capab	ilities Register	Next Item Ptr	PE Cap ID	0xe0	
	Device C	apabilities		0xe4	
Devic	ce Status	Device	Control	0xe8	
	Link Ca	pabilities	abilities		
Link	Status	Link C	Control	0xf0	
	Rese	erved		0xf4:0xfc	

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Address		
	PCI Express	Extended Capabilitie	es			
	Advanced Error Repo	rting Enhanced Capab	ility Header	0x0100		
	Uncorrectab	le Error Status Registe	er	0x0104		
	Uncorrectat	ole Error Mask Registe	r	0x0108		
	Uncorrectable	e Error Severity Regist	ter	0x010c		
	Correctable Error Status Register					
	Correctable Error Mask Register					
	Advanced Error Ca	pabilities and Control I	Register	0x0118		
	Head	der Log Register		0x011c		
				0x0120		
				0x0124		
				0x0128		
		Reserved		0x012c:0x01fc		
	Transaction	Layer Control Registe	r	0x0200		
	Transaction	Layer Status Register	r	0x0204		
	Data link L	ayer Control Register		0x0208		
	Data Link	Layer Status Register		0x020c		
	PE Physical	Layer Control Registe	er	0x0210		
	PE Physica	I Layer Status Registe	r	0x0214		
		Reserved		0x0218:0x021c		
	PE Comple	etion Timeout Register		0x0220		
	PE Flo	w Control Register		0x0224		
	PE Acl	Timer for 1x Link		0x0228		
	PE Acl	Timer for 4x Link		0x022c		
		Reserved		0x0230:0x0ffc		

3.2.2 Registers of PCI Header Region

3.2.2.1 Vendor ID Register

Address: 0x00 Width [bit]: 16

The PCI SIG has allocated 0x1148 to Marvell® as a unique identifier.

Reloadable out of the SPI Flash Memory or TWSI EEPROM.

Bit	Name	Description	Write	Read	Reset value
Vendor I	Vendor ID Register				
15:0		Identifies Marvell as manufacturer of the PCI device.	ne	0x11ab	0x11ab

3.2.2.2 Device ID Register

Address: 0x02 Width [bit]: 16

The Device ID register is a 16-bit register that uniquely identifies the PCI device within the Marvell® product line.

Reloadable out of the SPI Flash Memory or TWSI EEPROM.

Bit	Name	Description	Write	Read	Reset value
Device I	Device ID Register				
15:0		Identifies the PCI device within Marvell's product line.	ne	0x4360	0x4360

3.2.3 Registers of Header Region

3.2.3.1 Command Register

Address: 0x04 Width [bit]: 16

All bits are reloadable out of the SPI Flash Memory or TWSI EEPROM, except for fixed value bits.

Bit	Name	Description	Write	Read	Reset value
Comma	nd Register				
15:11	Reserved				
10	INTDIS	Disables the device from asserting INTx#. 1 = Disables the assertion of its INTx# signal. 0 = Enables the assertion of its INTx# signal.	yes	aw	0
		Refer to MSI Enable bit. If MSI Enable bit is set to 1, device is prohibited from using IN-Tx#.			
9	Reserved		ne	0	0
8	SERREN	1= Enables reporting of non-fatal and fatal errors to the Root Complex. Note that errors are reported if enabled either through this bit or through the PCI-Express specific bits in the Device Control Register	yes	aw	0
7	Reserved	<pci_express>Not applied to PCI-Express. Fixed value 0.</pci_express>	ne	0	0
6	PERREN	Parity Error Report Response Enable. 1 = Parity error reporting is enabled 0 = Parity error reporting is disabled.	yes	aw	0
5:3	Reserved		ne	0	0
2	BMEN	Bus Master enable Controls the ability of a PCI Express agent to issue memory and I/O read/write requests. 1= Bus master accesses are enabled, 0 = Bus master accesses are disabled.	yes	aw	0
1:0	Reserved				

3.2.3.2 Status Register

Address: 0x06 Width [bit]: 16

All bits are reloadable out of the SPI Flash Memory or TWSI EEPROM, except for fixed value bits.

Bit	Name	Description	Write	Read	Reset value
Status F	Register				
15	PERR	Parity Error. 1: This bit is set by a device whenever it receives a poisoned TLP, regardless of the state of the Parity Error Enable bit.	sh	value	0
14	SERR	Signaled SERR# . 1: This bit is set when a device sends an ERR_FATAL or ERR_NONFATAL message, and the SERREN bit in the Command Register is 1.	sh	value	0
13	RMABORT	Received Master Abort. 1: This bit is set when a Requestor receives a Completion with Unsupported Request Completion Status.	sh	value	0
12	RTABORT	Received Target Abort. 1: This bit is set when a Requestor receives a Completion with Completer Abort Completion Status.	sh	value	0
11:9	Reserved				
8	DATAPERR	Data Parity Error detected. 1: This bit is set by a Requestor if its Parity Error Enable bit is set when either of the following two conditions occur: - Requestor receives a Completion marked poisoned - Requestor poisons a write Request.	sh	value	0
7:5	Reserved		ne	0	0
4	NEWCAP	New capabilities bit 1: New capabilities list implemented 0: New capabilities list not implemented	ne	1	1
3	INTSTA	Indicates that an INTx interrupt message is pending internally to the device.	ne	value	0
2:0	Reserved				

3.2.3.3 Revision ID Register

Address: 0x08 Width [bit]: 8

Reloadable out of the SPI Flash Memory or TWSI EEPROM

Bit	Name	Description	Write	Read	Reset value
	Revision ID Register				
7:0		Specifies the PCI device revision number/ Rev. 0.0.	ne	0x00	0x00

3.2.3.4 Class Code Register

Address: 0x09 Width [bit]: 3 x 8

The Class Code Register is used to identify the generic function of the PCI device. The register consists of three byte-size fields.

The Subclass Register is reloadable out of the SPI Flash Memory or TWSI EEPROM.

Bit	Name	Description	Write	Read	Reset value
	Programming Inte	rface Register, Lower Byte			
7:0		Specifies the programming interface. Fixed Value = 0	ne	0	0
Bit	Name	Description	Write	Read	Reset value
	Sub-Class Registe				
7:0		Identifies the network controller as an "Ethernet Controller".	ne	0x00	0x00
Bit	Name	Description	Write	Read	Reset value
	Base-Class Regis	ter, Upper Byte			
7:0		Broadly classifies the function of the PCI device as network controller. Fixed Value = 0x02	ne	0x02	0x02

3.2.3.5 Cache Line Register

Address: 0x0c Width [bit]: 8

Reloadable out of the SPI Flash Memory or TWSI EEPROM (not recommended).

Bit	Name	Description	Write	Read	Reset value
Cache L	Cache Line Size Register				
7:0		Reserved	0	0	0

3.2.3.6 Latency Timer Register

Address: 0x0d Width [bit]: 8

Reloadable out of the SPI Flash Memory or TWSI EEPROM (not recommended).

Bit	Name	Description	Write	Read	Reset value
Latency	Latency Timer Register				
7:0		Reserved			

3.2.3.7 Header Type Register

Address: 0x0e Width [bit]: 8

Bit	Name	Description	Write	Read	Reset value
Base-Cla	Base-Class Register				
7:0		Reserved			

3.2.3.8 Built-in Self Test Register (BIST)

Address: 0x0f Width [bit]: 8

Bit	Name	Description	Write	Read	Reset value
Built-in Self Test Register					
7:0		BIST is not supported . Fixed value = 0.	ne	0	

Document Classification: Proprietary Information

3.2.3.9 Base Address Register (1st)

Address: 0x010 Width [bit]: 2 x 32

The 1st Base Address Register uses two 32-bit registers that determine the location of the PCI device in memory space, if memory mapping is enabled.

Reloadable out of the SPI Flash Memory or TWSI EEPROM.

Bit	Name	Description	Write	Read	Reset value
Base Ad	Base Address Register (1st)/Lower (Address: 0x010, Width [bit]: 32)				
31:14	Lower MEM- BASE Address	18 bits of lower mem base address.	yes	aw	0
13:4	MEMSIZE	Memory size requirements. Fixed value 0: Memory space requirement of 16384 bytes.	ne	0	
3	PREFEN	Prefetch enable. Fixed value 0: Prefetching is not allowed. (Memory Write Byte Merging is not tolerable).	ne	0	
2:1	Memory Type	Memory type. 0b00: Base register is 32 bits wide, and mapping can be done anywhere in the 32-bit memory space. 0b10: Base register is 64 bits wide and can be mapped anywhere in the 64-bit address space. Memory Type may be reloaded out of the SPI Flash Memory or TWSI EEPROM (further memory types).	ne	0x02	0x02
0	MEMSPACE	Memory space indicator. Fixed value = 0: This Base Address Register describes a memory base address.	ne	0	
Base Address Register (1st)/Upper (Address: 0x014, Width [bit]: 32)					
31:0	Upper MEM- BASE	Upper 32 bits of memory base address.	yes	aw	0

3.2.3.10 Base Address Register (2nd)

Address: 0x018 Width [bit]: 32

The 2nd Base Address Register determines the location of the PCI device in the I/O space.

Reloadable out of the SPI Flash Memory or TWSI EEPROM.

If En IO Mapping (in Our Register 1, bit 23) is disabled, this location is treated like reserved locations.

Bit	Name	Description	Write	Read	Reset value
Base Ad	ldress Register (2nd)			
31:8	IOBASE	I/O base address most significant 24 bits.	yes	aw	0
7:2	IOSIZE	I/O size requirements. Fixed value 0x0: I/O space requirement of 256 bytes.	ne	0	
1	Reserved				
0	IOSPACE	I/O space indicator.1: This Base Address Register describes an I/O base address.	ne	1	1

3.2.3.11 Subsystem Vendor ID Register

Address: 0x02c Width [bit]: 16

The Subsystem Vendor ID register may be used for customizing OEM versions. The subsystem Vendor ID is allocated by the PCI SIG.

Reloadable out of the SPI Flash Memory or TWSI EEPROM.

Bit	Name	Description	Write	Read	Reset value
Subsystem Vendor ID Register					
15:0	Subsystem Ven- dor ID	Identifies the subsystem vendor. Must be a valid non-zero value.	ne	0x11ab	0x11ab

3.2.3.12 Subsystem ID Register

Address: 0x02e Width [bit]: 16

The Subsystem ID register may be used for customizing OEM versions.

Reloadable out of the SPI Flash Memory or TWSI EEPROM.

Bit	Name	Description	Write	Read	Reset value
Subsyst	Subsystem ID Register				
15:0	Subsystem ID	Identifies the subsystem. Must be a valid non-zero value. (Default value: Device ID)	ne	aw	0x4360

Should be reloaded from SPI Flash Memory or TWSI EEPROM with the Subsystem ID of the related manufacturing option.

3.2.3.13 Expansion Rom Base Address Register

Address: 0x030 Width [bit]: 32

The Expansion Rom Base Address Register is a 32-bit register that determines the base address and size information of the Expansion Rom.

Within the SPI Flash Memory 96 kB may be used for boot code.

Reloadable out of the SPI Flash Memory or TWSI EEPROM.

If En Eprom (in Our Register 1, bit 22) is disabled, this location is treated like reserved locations.

Bit	Name	Description	Write	Read	Reset value
Expansion Rom Base Address Register					
31:17	Rombase	ROM base address significant 15 bits.	yes	aw	0
16:14	Rombase/size	Treated as Rombase or Romsize depending on settings of Pagesize (Our Register 1 , bits 21:20).	yes ne	aw 0	0
13:11	Romsize	ROM size requirements. Fixed value 0: Memory space requirement of 16 kB or higher.	ne	0	

Bit	Name	Description	Write	Read	Reset value
10:1	Reserved				
0	ROMEN	Address decode enable. Read/write accessible. 0: The device's Expansion ROM address space is disabled. 1: And MEMEN = 1 (Command Register, bit 1), the device's Expansion ROM address space is enabled.	yes	aw	0

3.2.3.14 New Capabilities Pointer (New Cap Ptr)

Address: 0x034 Width [bit]:

The New Capabilities Pointer Register is a 8-bit register pointing to the first element in the New Capabilities List. Reloadable out of the SPI Flash Memory or TWSI EEPROM.

Bit	Name	Description	Write	Read	Reset value
New Cap	oabilities Pointer Re	gister			
7:0	New Capabili- ties Pointer	Points to the New Capabilities List	ne	0x48	0x48

3.2.3.15 Interrupt Line Register

Address: 0x03c Width [bit]: 8

Bit	Name	Description	Write	Read	Reset value
Interrup	t Line Register				
7:0		The Interrupt Line Register is used to communicate interrupt line routing information. POST software writes the routing information into this register as it initializes and configures the system. The value of this register indicates to which input of the system interrupt controller(s) the device's interrupt pin is connected. Device drivers and operating systems may use this information to determine priority and vector information. The Interrupt Line Register is not modified by the PCI device. It has no effect on the operation of the device.	yes	aw	0

3.2.3.16 Interrupt Pin Register

Address: 0x03d Width [bit]: 8

Bit	Name	Description	Write	Read	Reset value
Interrup	Interrupt Pin Register				
7:0		Fixed value 0x01:The PCI device uses the interrupt pin INTA#.	ne	0x01	

3.2.3.17 Min_Gnt Register

Address: 0x03e Width [bit]: 8

Reloadable out of the SPI Flash Memory or TWSI EEPROM.

Bit	Name	Description	Write	Read	Reset value
Min_Gn	t Register				
7:0		This read-only register specifies the PCI device's desired settings for Latency Timer value. The value specifies - in units of 1/4 microseconds - the burst period needed by the PCI device assuming a clock rate of 33 MHz. (64 qwords x 30 ns) = 1.92 μs 1.92 μs/0.25 μs = 8	ne	0x08	0x08

3.2.3.18 Max_Lat Register

Address: 0x03f Width [bit]: 8

Reloadable out of the SPI Flash Memory or TWSI EEPROM.

Bit	Name	Description	Write	Read	Reset value
Max_Lat	Max_Lat Register				
7:0		Reserved	ne	0x00	0x00

3.2.4 Registers of Device Dependent Region

3.2.4.1 Our Register 1 and Our Register 2

Address: 0x040 Width [bit]: 2 x 32

These are the first two used locations in the "device dependent region". The default values are chosen for the most common environments.

Modifications may be handled as manufacturing option, driver options, or dedicated configuration software.

Most of the switches in **Our Register 1** and **2** are not intended for use at run time. Manufactured PCI devices may come up with different settings than defined as **Reset value** (if reloaded out of the SPI Flash Memory or TWSI EE-PROM).

Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S102130-00, Rev. --

Reloadable out of the SPI Flash Memory or TWSI EEPROM. The fields marked in column **write** with "ne" are writable only in testmode. The fields marked with "yes" are writable in configuration space and with normal accesses to the **Control Register File**

Bit	Name	Description	Write	Read	Reset value
Our Re	gister 1 (Address: 0x4	0, Width [bit]: 32)			
31	Run_PiG	1: Enable Plug In Go.	ne	1	1
30	DLL_dis	PCI DLL disable reset strapping (disable = 1). It is a debug bit (if everything is ok, should be always set to '1')	ne	1	1
29	Reserved				
28	PHY Coma Mode	Set PHY to Coma Mode 1: Coma mode 0: Normal operation Lowest possible Power Mode, no core clock	ne	aw	0
27	Reserved				
26	PHY Power Down Mode	Set PHY to Power Down Mode 1: Power Down mode 0: Normal operation PHY Power Down Mode (low Power mode,	yes	aw	0
		only core clock active).			
25	Reserved				
24	En Boot	Boot enable, for software purposes only 1: Don't boot with expansion ROM code. 0: Boot with expansion ROM code	yes	aw	0
23	En IO Mapping	Controls mapping of the Control Register File to the I/O space (manufacturing option). 1: Address decoding for I/O accesses enabled. 0: Any address decoding for I/O accesses is disabled (see also Base Address Register (2nd)).	ne	1	1

Bit	Name	Description	Write	Read	Reset value
22	En Eprom	Controls mapping of the SPI Flash Memory to the memory space. 1: Address decoding for memory accesses enabled. 0: Any address decoding for memory accesses is disabled (see also ROM Base Address Register).	ne	0	0
21:20	Pagesize<1:0>	Pagesize/SPI Flash Memory Defines the size, which is mapped to the system (see Romsize/Rombase). 0x3: 128 kB 0x2: 64 kB 0x1: 32 kB 0x0: 16 kB	ne	0x3	0x3
19	Reserved				
18:16	Page Reg<2:0>	Page Register Selects the page of the SPI Flash Memory space, which is mapped to the system. 0x0: Page 0, 0x1: Page 1, 0x7: Page 7	yes	aw	0
15	PEX_LegNat_Sel	PEX: 1: Device in PEX legacy mode; 0: Device in PEX native mode. Reset by Power on reset.	yes	aw	0
14:0	Reserved		yes	aw	

Bit	Name	Description	Write	Read	Reset value
Our Reg	gister 2 (Address: 0x4	14, Width [bit]: 32)			
31:24	VPD Write Thr	Defines the first address of the writable VPD area in steps of 128 Bytes. Default value is 128 Bytes = address 0x80. Last address of writable VPD area is 255. Higher addresses belong to the configuration data also stored within TWSI EEPROM.	ne	0x01	0x01
23:17	VPD Devsel	Defines the Device Select Byte for the TWSI EEPROM used for VPD storage. Default value is 0b1010000. Hint: VPD Devsel must not be overwritten via TWSI EEPROM. This may lead to a complete damage of the board (TWSI EEPROM must be changed afterwards!!!)	ne	0x50	0x50
16:14	VPD ROM Size	Defines the size of the assembled TWSI EEPROM in Bytes. 0x0: 256 Bytes 0x1: 512 Bytes 0x2: 1024 Bytes 0x3: 2048 Bytes 0x4: 4096 Bytes 0x5: 8192 Bytes 0x6: 16384 Bytes 0x7: 32768 Bytes Default value is 2048 Bytes. If any other size is used, this field must be reprogrammed out of the SPI Flash Memory. Due to currently used addressing procedure via TWSI bus only applications up to size 2048 Bytes are supported.	ne	0x3	0x3
13:0	Reserved				

Power Management Capability ID Register (PM Cap ID) 3.2.4.2

Address: 0x048 Width [bit]:

Reloadable out of the SPI Flash Memory or TWSI EEPROM.

Bit	Name	Description	Write	Read	Reset value
Power M	wer Management Capability ID Register				
7:0	Cap ID	Power Management Capabilities ID	ne	0x01	0x01

Power Management Next Item Pointer 3.2.4.3

Address: 0x049 Width [bit]:

Reloadable out of the SPI Flash Memory or TWSI EEPROM.

Bit	Name	Description	Write	Read	Reset value
Power N	ver Management Next Item Pointer				
7:0	Next Item Ptr		ne	0x50	0x50

3.2.4.4 **Power Management Capabilities Register**

Address: 0x4a Width [bit]:

Reloadable out of the SPI Flash Memory or TWSI EEPROM.

Only the bits are mentioned which differ from the PCI Configuration File.

Bit	Name	Description	Write	Read	Reset value
Power N	Power Management Capabilities Register				
15:11	PME Support	Power Management Event Support: Specifies the power state in which the signal PME# may be asserted. If no Vaux is available, bit 15 is forced to zero signaling no PME# support in D3 _{cold}	ne		

Bit	Name	Description	Write	Read	Reset value
15		1: PME# can be asserted from D3 _{cold} , if Vaux is available 0: PME# cannot be asserted from D3 _{cold} , if Vaux is not available		1 (0 if no Vaux)	1 (0 if no Vaux)
14		1: PME# can be asserted from D3 _{hot}		1	1
13		1: PME# can be asserted from D2			
12		1: PME# can be asserted from D1		1	1
11		1: PME# can be asserted from D0		1	1
10	D2 Support	D2 Support 1: The PCI device supports D2 Power Management State.	ne		
9	D1 Support	D1 Support 1: The PCI device supports D1 Power Management State.	ne	1	1
8:6	Reserved	Reserved, but reloadable out of the SPI Flash Memory or TWSI EEPROM for changes in the PCI Specification.	ne	0b000	0b000
5	DSI	Device Specific Initialization: 1: The PCI device requires device specific initialization 0: The PCI device does not require device specific initialization	ne	0	0
4:3	Reserved				
2:0	Version	The PCI device complies with Revision 1.1 of the PCI Power Management Interface Specification	ne	0x2	0x2

3.2.4.5 Power Management Control/Status Register

Address: 0x04c Width [bit]: 16

Reloadable out of the SPI Flash Memory or TWSI EEPROM.

Bit	Name	Description	Write	Read	Reset value
Power N	lanagement Control	/Status Register			
15	PME Status	1: Indicates that PME# has been asserted by the PCI device. Reset by Power on re- set and when written with 1.	sh	value	0
14:13	Data Scale	Indicates the scaling factor to be used when interpreting the value of the Data Register . The read value depends on the setting of the Data Select field.	ne	value	0b01
12:9	Data Select	This 4-bit field is used to select which data is to be reported through the Data Register and Data Scale field.	yes	aw	0
8	PME En	Enables PME# generation. Reset by Power on reset	yes	aw	0
7:2	Reserved				
1:0	Power State	Controls the Power Management State of the PCI device. The PCI device supports all power management states.	yes	aw	0

The 16 2-bit **Data Scale** fields and the 16 8-bit **Data Register** values that can be selected by the **Data Select** field, are reloadable out of the SPI Flash Memory or TWSI EEPROM by writing complete 32-bit wide sets of (**Data Select**, **Data Scale**, **Data**) to the **Power Management Control/Status** and **Data Register**.

Warning: To modify the contents of any **Data Scale** or **Data** field the **Data Scale** field **MUST** always be written with the desired **Data Select** value in the same 32-bit access!

3.2.4.6 Power Management Data Register

Address: 0x04f Width [bit]: 8

Reloadable out of the SPI Flash Memory or TWSI EEPROM.

Bit	Name	Description	Write	Read	Reset value
	Power Manag	ement Data Register			
7:0	Data	This read-only register is used to report the state dependent data requested by the Data Select field. The value of this register is scaled by the value reported by the Data Scale field.	ne	value	see Power Man- age- ment Data Table

3.2.4.7 Power Management Data Table

Data and Data Scale are hidden registers accessible through the Power Management Control/Status Register (Data Select).

Data Scale is writable by the EPROM Loader by writing to Power Management Control/Status Register.

Data is writable by the EPROM Loader by writing to Power Management Data Register.

Data and **Data Scale** are reloaded from the SPI Flash Memory or TWSI EEPROM with values matching the manufacturing option. See "SPI Flash Memory Reloads" in the PCI device's application specification".

Value in Data Select	Meaning	Data (8 bit) Reset Value	Data Scale (2 bit) Reset Value	[Watt] with Reset Values
0	D0 Power consumed	0x13	0b01	1.9
1	D1 Power consumed	0x0c	0b01	1.2
2	D2 Power consumed	0x0c	0b01	1.2
3	D3 Power consumed	0x0c	0b01	1.2
4	D0 Power dissipated	0x13	0b01	1.9
5	D1 Power dissipated	0x0c	0b01	1.2
6	D2 Power dissipated	0x0c	0b01	1.2
7	D3 Power dissipated	0x0c	0b01	1.2
8:15	For multifunction devices only	0	0	0

3.2.4.8 VPD Capability ID Register (VPD Cap ID)

Address: 0x050 Width [bit]: 8

Reloadable out of the SPI Flash Memory or TWSI EEPROM.

Bit	Name	Description	Write	Read	Reset value
VPD Cap	VPD Capability ID Register				
7:0	Cap ID	VPD Capabilities ID	ne	0x03	0x03

3.2.4.9 VPD Next Item Pointer

Address: 0x051 Width [bit]: 8

Bit	Name	Description	Write	Read	Reset value
VPD Nex	VPD Next Item Pointer				
7:0	Next Item Ptr	Pointer to the next item in the capabilities list.	ne	0x5c	0x5c

3.2.4.10 VPD Address Register

Address: 0x052 Width [bit]: 16

The **VPD Address Register** and the **VPD Data Register** control a TWSI interface, which runs a 100 kHz protocol to an external TWSI EEPROM.

Reloadable out of the SPI Flash Memory or TWSI EEPROM.

Also writable in I/O space.

Bit	Name	Description	Write	Read	Reset value
VPD Address Register					
15	Flag	Starts the VPD data transfers, determines its direction and signals its completion by being toggled. If written 1, a VPD write is started. Set to 0 after completion. If written 0, a VPD read is started. Set to 1 after completion.	exec	value	0
14:0	VPD Address	Address of the VPD contents to be written / read.	yes	aw	0x00

3.2.4.11 VPD Data Register

Address: 0x054 Width [bit]: 32

Reloadable out of the SPI Flash Memory or TWSI EEPROM.

Also writable in I/O space.

Bit	Name	Description	Write	Read	Reset value
VPD Dat	VPD Data Register				
31:0	VPD Data	Must be written before VPD Address Register for VPD write. Contains VPD read Data after completion of VPD read.	yes	aw	0x00

3.2.4.12 TWSI EEPROM Control Register

Address: 0x05a Width [bit]: 16

The TWSI EEPROM Control Register controls the TWSI EEPROM Loader.

Reloadable out of the SPI Flash Memory and can be written in test mode.

Bit	Name	Description	Write	Read	Reset value
TWSI EE	PROM Control Regi	ster			
15	Flag	Starts and stops the data transfer. If written 1, the TWSI EEPROM Loader is started. If written 0, the TWSI EEPROM Loader is stopped.	ne	0	0
14:0	TWSI EEPROM Address	Start address for TWSI EEPROM Loader. Should be minimum 256 (0x100) and in 8 byte steps.	ne	0x100	0x100

3.2.4.13 MSI Capability ID Register (MSI Cap ID)

Address: 0x05c Width [bit]: 8

The device is capable of Message Signaled Interrupt (MSI) handling.

Reloadable out of the SPI Flash Memory or TWSI EEPROM.

Bit	Name	Description	Write	Read	Reset value
MSI Cap	MSI Capability ID Register				
7:0	Cap ID	MSI Capabilities ID	ne	0x05	0x05

3.2.4.14 MSI Next Item Pointer

Address: 0x05d Width [bit]: 8

Bit	Name	Description	Write	Read	Reset value
MSI Nex	MSI Next Item Pointer				
7:0	Next Item Ptr	Pointer to the next item in the capabilities list.	ne	0x6c	PEX: 0x0e

3.2.4.15 MSI Message Control

Address: 0x05e Width [bit]: 16

Bit	Name	Description	Write	Read	Reset value
MSI Me	essage Control				
15:8	Reserved		ne	0	0
7	64 Bit Addr capable	This device is capable of generating a 64-bit message address The device is not capable of generating a 64-bit message address	ne	1	1
6:4	Multiple Mes- sage Enable	Defines the number of allocated messages 0b000: 1 The implementation supports one allocated Message.	yes	value	0
3:1	Multiple Mes- sage Capable	System software reads this field to determine the number of requested messages. 0b000: 1 There is one requested message.			
0	MSI Enable	1: MSI is used to request service. INTA# is disabled. 0: INTA# is used to request service MSI is disabled			

3.2.4.16 MSI Message Address

Address: 0x060 Width [bit]: 2 x 32

Bit	Name	Description	Write	Read	Reset value
MSI Mes	sage Lower Addres	s (Address: 0x060, Width [bit]: 32)			
31:2		System-specified message address If MSI Enable is set, the contents of this register specify the DWORD aligned address for the MSI memory write transaction.	yes	value	0x00
1:0	Reserved				
MSI Mes	sage Upper Address	s (Address: 0x064, Width [bit]: 32)			
31:0		System-specified message upper address If MSI Enable is set, the contents of this register (if non-zero) specify the upper 32- bits of a 64-bit message address If the contents of this register are zero, the device uses the 32 bit address specified by the MSI Message Lower Address.	yes	value	0x00

3.2.4.17 MSI Message Data

Address: 0x068 Width [bit]: 16

Bit	Name	Description	Write	Read	Reset value
MSI Mes	MSI Message Data				
31:16	Reserved				
15:0	Message Data	System-specified message. If MSI Enable is set, the Message Data is driven onto the lower word of the memory write transaction's data phase. The Multiple Message Enable field (bits 6:4 of the Message Control Register) defines the number (only one message supported by the chip)	yes	value	0x00

3.2.4.18 PCI Express Status

Address: 0x070 Width [bit]: 32

Reloadable out of the SPI Flash Memory or TWSI EEPROM

Bit	Name	Description	Write	Read	Reset value
PCI Exp	ress Status				
31:30	Reserved				
29:16		<pci_express>Not applied to PCI-Express. Fixed value 0.</pci_express>	ne	0	0
15:8	Request ID (Bus Number)	Request ID is the combination of a Requester's Bus Number, Device Number, and Function Number that uniquely identifies the Requester. The Bus Number is updated with each Configuration Write transaction.	ne	value	0
7:3	Request ID (Device Number)	Request ID is the combination of a Requester's Bus Number, Device Number, and Function Number that uniquely identifies the Requester. The Device Number is updated with each Configuration Write transaction.	ne	value	0
2:0	Request ID (Function Num- ber)	The Function Number is part of the Requester ID. Fixed value: 0b000	ne	0x00	0x00

3.2.4.19 Calibration Control/Status Register

Address: 0x074, 0x076Width [bit]:16

<PCI_Express>Not applied to PCI-Express. Fixed value 0.

3.2.4.20 Discard Counter, Retry Counter

Address: 0x078, 0x07aWidth [bit]:16, 8

<PCI_Express>Not applied to PCI-Express. Fixed value 0.

April 20, 2004, Advanced

3.2.4.21 Our Status Register

Address: 0x07c Width [bit]: 32

Bit	Name	Description	Write	Read	Reset value
Our Status Register					
31	Reserved		ne	value	
30	Reserved		ne	value	
29:28	Reserved		ne	value	
27	Reserved		ne	value	
26	Reserved		ne	value	0
25:24	DLL Err	DLL status indication: 0x0:No error 0x1:Delay line pointer at start, and down count 0x2:Delay line pointer at end, and up count 0x3:Reserved Read only register	ne	value	
23:20	DLL Row	DLL row counters values. Calculate the TAPs number, using row and column numbers. Read only register	ne	value	
19:16	DLL Col	DLL column counters values. Calculate the TAPs number, using row and column numbers. Read only register	ne	value	
15:8	Reserved				
7:0	Reserved				

3.2.4.22 PE Capability ID Register (PM Cap ID)

Address: 0x0e0 Width [bit]: 8

Reloadable out of the SPI Flash Memory or TWSI EEPROM.

Bit	Name	Description	Write	Read	Reset value
PE Capa	PE Capability ID Register				
7:0	Cap ID	PCI Express Capabilities ID	ne	0x10	0x10

3.2.4.23 PE Next Item Pointer

Address: 0x0e1 Width [bit]: 8

Reloadable out of the SPI Flash Memory or TWSI EEPROM

Bit	Name	Description	Write	Read	Reset value
PE Next	Item Pointer				
7:0	Next Item Ptr	Pointer to the next PCI capability structure.	ne	0	0

3.2.4.24 PE Capabilities Register

Address: 0x0e2 Width [bit]: 16

Reloadable out of the SPI Flash Memory or TWSI EEPROM.

Bit	Name	Description	Write	Read	Reset value
PE Capa	bilities Register				
15:14	Reserved				
13:9	Interrupt Mes- sage Number	If this function is allocated more than one MSI interrupt number, this register is required to contain the offset between the base Message Data and the MSI Message that is generated when any of the status bits in either the Slot Status register or the Root Port Status register of this capability structure are set. Hardware is required to update this field so that it is correct if the number of MSI Messages assigned to the device changes.	ne	0	0
8	Reserved				

CONFIDENTIALDocument Classification: Proprietary Information

Bit	Name	Description	Write	Read	Reset value
7:4	Device/Port Type	Indicates the type of PCI Express logical device. Defined encodings are: 0b0000: PCI Express Endpoint device 0b0001: Legacy PCI Express Endpoint device 0b0100: Root Port of PCI Express Root	ne	1	1
3:0	Capability Version	PCI Express capability structure version number.	ne	0x01	0x01

3.2.4.25 Device Capabilities Register

Address: 0x0e4 Width [bit]: 32

Bit	Name	Description	Write	Read	Reset value
Device	Capabilities Registe	г			
31:28	Reserved				
27:26	Captured Slot Power Limit Scale	It specifies the scale used for the Slot Power Limit Value. Range of Values: 0b00: 1.0x 0b01: 0.1x 0b10: 0.01x 0b11: 0.001x	ne	0	0
25:18	Captured Slot Power Limit Value	Specifies the upper limit on power supplied by slot in combination with the Slot Power Limit Scale value. Power limit (in Watts) calculated by multiplying the value of this field by the value in the Slot Power Limit Scale field.	ne	0	0
17:15	Reserved				

Bit	Name	Description	Write	Read	Reset value
14	Power Indicator Present	indicates that a Power Indicator is implemented on the PCI device.	ne	0	0
13	Attention Indicator Present	indicates that an Attention Indicator is implemented on the PCI device.	ne	0	0
12	Attention But- ton Present	indicates that an Attention Button is implemented on the PCI device.	ne	0	0
11:9	Endpoint L1 Acceptable Latency	This field indicates the acceptable latency that an Endpoint can withstand due to the transition from L1 state to the L0 state. Power management software uses the reported L1 Acceptable Latency number for comparison with the L1 Exit Latencies reported (see below) by all components comprising the data path from this Endpoint to the Root Complex Root Port to determine whether Active State Link PM L1 entry can be used with no loss of performance. Defined encodings are: 0b000: Less than 1 μs 0b001: 1 μs to less than 2 μs 0b010: 2 μs to less than 4 μs 0b011: 4 μs to less than 8 μs 0b100: 8 μs to less than 16 μs 0b101: 16 μs to less than 32 μs 0b110: 32 μs up to 64 μs 0b111: More than 64 μs	ne	0b111	0b111

Bit	Name	Description	Write	Read	Reset value
8:6	Endpoint L0s Acceptable Latency	This field indicates the acceptable total latency that an Endpoint can withstand due to the transition from L0s state to the L0 state. Power management software uses the reported L0s Acceptable Latency number for comparison with the L0s exit latencies reported by all components comprising the data path from this Endpoint to the Root Complex Root Port to determine whether Active State Link PM L0s entry can be used with no loss of performance. Defined encodings are: 0b000: Less than 64 ns 0b001: 64 ns to less than 128 ns 0b010: 128 ns to less than 256 ns 0b011: 256 ns to less than 512 ns 0b100: 512 ns to less than 1 μs 0b101: 1 μs to less than 2 μs 0b110: 2 μs up to 4 μs 0b111: More than 4 μs	ne	0b111	0b111
5	Extended Tag Field Supported	This field indicates the maximum supported size of the Tag field. 1: 8-bit Tag field supported 0: 5-bit Tag field supported	ne	0	0
4:3	Phantom Functions Supported	This field indicates the support of using unclaimed function numbers to extend the number of outstanding transactions allowed by logically combining unclaimed function numbers (called Phantom Functions) with the Tag identifier. Note that Phantom Function support for the Device must be enabled by the corresponding control field in the Device Control register. Not supported according to bit 9 of Device Control Register.	ne	0	0
2:0	Max_Payload_Si ze Supported	This field indicates the maximum payload size in bytes that the device can support for TLPs. Defined encodings are: 0b000: 128 B maximum payload size	ne	0	0

3.2.4.26 Device Control Register

Address: 0x0e8 Width [bit]: 16

Bit	Name	Description	Write	Read	Reset value
Device C	Control Register				
15	Reserved				
14:12	Max_Read_Request_Size	This field sets the maximum Read Request size for the Device as a Requester in bytes. The Device must not generate read requests with size exceeding the set value. Defined encodings for this field are: 0b000: 128 B max read request size 0b001: 256 B max read request size 0b010: 512 B max read request size 0b011: 1024 B max read request size 0b100: 2048 B max read request size 0b101: 4096 B max read request size 0b110: Reserved 0b111: Reserved	yes	aw	0x02
11	Enable No Snoop	The device is permitted to set the No Snoop bit in the Requester Attributes of initiated transactions that do not require hardware enforced cache coherency. Fixed value 0, not supported.	ne	0	0
10	Auxiliary (AUX) Power PM Enable	enables a device to draw AUX power in- dependent of PME AUX power. Reset by Power on reset.	ne	aw	1
9	Phantom Functions Enable	enables a device to use unclaimed functions as Phantom Functions to extend the number of outstanding transaction identifiers. Fixed value 0, not supported.	ne	0	0
8	Extended Tag Field Enable	1: enables a device to use an 8-bit Tag field as a requester. Fixed value 0, not supported.	ne	0	0

Bit	Name	Description	Write	Read	Reset value
7:5	Max_Payload_Si ze	This field sets the maximum TLP payload size for the device. As a receiver, the device must handle TLPs as large as the set value; as transmitter, the device must not generate TLPs exceeding the set value. Permissible values for programming are indicated by the Max_Payload_Size supported in the Device Capabilities register. Defined encodings for this field are: 0b000: 128 B maximum payload size	yes	aw	0
4	Enable Relaxed Ordering	The device is permitted to set the Relaxed Ordering bit in the Attributes field of initiated transactions that do not require strong write ordering. Fixed value 0.	ne	0	0
3	Unsupported Request Report- ing Enable	This bit controls reporting of Unsupported Requests when set.	yes	aw	0
2	Fatal Error Reporting Enable	This bit controls reporting of fatal errors.	yes	aw	0
1	Non-Fatal Error Reporting Enable	This bit controls reporting of non-fatal errors.	yes	aw	0
0	Correctable Error Reporting Enable	This bit controls reporting of correctable errors.	yes	aw	0

3.2.4.27 Device Status Register

Address: 0x0ea Width [bit]: 16

Bit	Name	Description	Write	Read	Reset value
Device S	Device Status Register				
15:6	Reserved				
5	Transactions Pending	indicates that a device has issued Non-Posted Requests which have not been completed. A device reports this bit cleared only when all Completions for any outstanding Non-Posted Requests have been received.	ne	value	
4	AUX Power Detected	Devices that require AUX power report this bit as set if AUX power is detected by the device.	ne	value	
3	Unsupported Request Detected	indicates that the device received an Unsupported Request. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control Register. Default value is 0.	sh	value	0
2	Fatal Error Detected	indicates status of fatal errors detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register. For devices supporting Advanced Error Handling, errors are logged in this register regardless of the settings of the correctable error mask register. Default value is 0.	sh	value	0

Bit	Name	Description	Write	Read	Reset value
1	Non-Fatal Error Detected	indicates status of nonfatal errors detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register. For devices supporting Advanced Error Handling, errors are logged in this register regardless of the settings of the correctable error mask register. Default value is 0.	sh	value	0
0	Correctable Error Detected	indicates status of correctable errors detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register. For devices supporting Advanced Error Handling, errors are logged in this register regardless of the settings of the correctable error mask register. Default value is 0.	sh	value	0

3.2.4.28 Link Capabilities Register

Address: 0x0ec Width [bit]: 32

Bit	Name	Description	Write	Read	Reset value
Link Cap	pabilities Register				
31:24	Port Number	This field indicates the PCI Express port number for the given PCI Express Link. Hardware Initialized.	ne	value	00
23:18	Reserved				

Bit	Name	Description	Write	Read	Reset value
17:15	L1 Exit Latency	This field indicates the L1 exit latency for the given PCI Express Link. The value reported indicates the length of time this Port requires to complete transition from L1 to L0. Defined encodings are: 0b000: Less than 1 μs 0b001: 1 μs to less than 2 μs 0b010: 2 μs to less than 4 μs 0b011: 4 μs to less than 8 μs 0b100: 8 μs to less than 16 μs 0b101: 16 μs to less than 32 μs 0b110: 32 μs up to 64 μs 0b111: More than 64 μs	ne	0b111	0b111
14:12	L0s Exit Latency	This field indicates the L0s exit latency for the given PCI Express Link. The value reported indicates the length of time this Port requires to complete transition from L0s to L0. Defined encodings are: 0b000: Less than 64 ns 0b001: 64 ns to less than 128 ns 0b010: 128 ns to less than 256 ns 0b011: 256 ns to less than 512 ns 0b100: 512 ns to less than 1 μs 0b101: 1 μs to less than 2 μs 0b110: 2 μs up to 4 μs 0b111: Reserved	ne	0b010	0b010
11:10	Active State Link PM Support	This field indicates the level of active state power management supported on the given PCI Express Link. Defined encodings are: 0b00: Reserved 0b01: L0s entry supported 0b10: Reserved 0b11: L0s and L1 supported	ne	0b01	0b01

Bit	Name	Description	Write	Read	Reset value
9:4	Maximum Link Width	This field indicates the maximum width of the given PCI Express Link. Defined encodings are: 0b000000: Reserved	ne	x01 x01	x01 x01
3:0	Maximum Link Speed	This field indicates the maximum link speed of the given PCI Express Link. Defined encodings are: 0b0001 2.5 Gb/s link. All other encodings are reserved.	ne	0x01	0x01

3.2.4.29 Link Control Register

Address: 0x0f0 Width [bit]: 16

Bit	Name	Description	Write	Read	Reset value
Link Co	ntrol Register				
15:8	Reserved				
7	Extended Sync	1: forces extended transmission of FTS ordered sets in FTS and extra TS2 at exit from L1 prior to entering L0. This mode provides external devices monitoring the link time to achieve bit and symbol lock before the link enters L0 state and resumes communication.	yes	aw	0
6	Common Clock Configuration	1: indicates that this component and the component at the opposite end of this link are operating with a distributed common reference clock. 0: indicates that this component and the component at the opposite end of this link are operating with asynchronous reference clock. Components utilize this common clock configuration information to report the correct L0s and L1 Exit Latencies.	yes	aw	0
5:4	Reserved				

Bit	Name	Description	Write	Read	Reset value
3	Read Comple- tion Boundary (RCB)	It determines the naturally aligned address boundaries on which a Read Request may be serviced with multiple Completions. Encodings are: 0b0: 64 bytes 0b1: 128 bytes Device supports only 128 bytes	yes	aw	1
2	Reserved				
1:0	Active State Link PM Control	This field controls the level of active state PM supported on the given PCI Express Link. Defined encodings are: 0b00: Disabled 0b01: L0s Entry Supported 0b10: Reserved 0b11: L0s and L1 Entry Supported	yes	aw	0

3.2.4.30 Link Status Register

Address: 0x0f2 Width [bit]: 16

Bit	Name	Description	Write	Read	Reset value
Link Sta	Link Status Register				
15:13	Reserved				
12	Slot Clock Configuration	indicates that the component uses the same physical reference clock that the platform provides on the connector. 25 MHz reference clock. If the device uses an independent clock irrespective of the presence of a reference on the connector. Hardware initialized	ne	1	1

Bit	Name	Description	Write	Read	Reset value
11	Link Training	This read-only bit indicates that Link training is in progress; hardware clears this bit once Link training is complete. This field is not applicable and reserved for endpoint devices and Upstream Ports of Switches. For debug purpose, not used for Yukon EC	ne	value	
10	Training Error	This read-only bit indicates that a Link training error occurred. This field is not applicable and reserved for endpoint devices and Upstream Ports of Switches. This bit is cleared by hardware upon successful training of the Link to the L0 Link state. For debug purpose, not used for Yukon EC	ne	value	
9:4	Negotiated Link Width	This field indicates the negotiated width of the given PCI Express Link. Defined encodings are: 0b000001: x1 All other encodings are reserved.	ne	value	
3:0	Link Speed	This field indicates the negotiated Link speed of the given PCI Express Link. Defined encodings are: 0b0001: 2.5 Gb/s PCI Express Link All other encodings are reserved.	ne	value	

3.2.4.31 Advanced Error Reporting Enhanced Capability Header

Address: 0x0100Width [bit]: 32

Reloadable out of the SPI Flash Memory or TWSI EEPROM.

Bit	Name	Description	Write	Read	Reset value
Advanc	ed Error Reporting E				
31:20	Next Capability Offset	This field is a PCI-SIG defined ID number that indicates the nature and format of the extended capability.	ne	0	0
19:16	Capability Version	This field is a PCI-SIG defined version number that indicates the version of the capability structure present.	ne	0x01	0x01
15:0	PCI Express Extended Capa- bility ID	This field contains the offset to the next PCI Express capability structure.	ne	0x01	0x01

3.2.4.32 Uncorrectable Error Status/Mask/Severity Register

Address: 0x0104:0x010c Width [bit]:3 x 32

Bit	Name	Description	Write	Read	Reset value
Uncorre	ctable Error Status F	Register			
31:21	Reserved				
20	Unsupported Request Error	1: indicates - Received unsupported TLP type or - Received unsupported message codes or - Failed address decoding on received TLP. Reset by PEX Sticky Reset	sh	value	0
19	ECRC Error	Not supported, fixed value 0.	ne	0	0

Bit	Name	Description	Write	Read	Reset value
18	Malformed TLP	1: indicates Received TLP with data payload size larger than 128 B (Max_Payload_Size) or Received TLP with undefined Type field value or Received TLP with illegal Format field value or Received TLP with data payload size different from expected according to the length field or Received TLP with uninitialized VC (different than VC-0) or Received request with address/length combination crossing 4 KB boundary or Received TLP with TD = 1 but without TLP digest. Reset by PEX Sticky Reset	sh	value	0
17	Receiver Over- flow	Not supported, fixed value 0.	ne	0	0
16	Unexpected Completion	indicates received unexpected completion TLP. Completion does not correspond to one of the outstanding Non-Posted requests. Reset by PEX Sticky Reset	sh	value	0
15	Completer Abort	Not supported, fixed value 0.	sh	0	0
14	Completion Tim- eout	indicates outstanding Non-Posted request to PCI-Express has expired. Reset by PEX Sticky Reset	sh	value	0
13	Flow Control Protocol Error	indicates Flow Control Protocol Error Status. Reset by PEX Sticky Reset	sh	0	0
12	Poisoned TLP	1: indicates poisoned TLP received. Reset by PEX Sticky Reset	sh	value	0
11:5	Reserved				
4	Data Link Proto- col Error	indicates reception of an Acknowledge with out of range AckNak_Seq_Num (Ack/Nak Sequence Number). Reset by PEX Sticky Reset	sh	value	0
3:1	Reserved				
0	Training Error	Not supported, fixed value 0.	sh	0	0

Bit	Name	Description	Write	Read	Reset value
Uncorre	ectable Error Mask R	egister			
31:21	Reserved				
20	Unsupported Request Error	not send error message to RC, not lock First Error Pointer, not logged in the Header Log register. Reset by PEX Sticky Reset	yes	aw	0
19	ECRC Error	Not supported, fixed value 0.	ne	0	0
18	Malformed TLP	not send error message to RC, not lock First Error Pointer, not logged in the Header Log register. Reset by PEX Sticky Reset	yes	aw	0
17	Receiver Over- flow	Not supported, fixed value 0.	ne	0	0
16	Unexpected Completion	not send error message to RC, not lock First Error Pointer, not logged in the Header Log register. Reset by PEX Sticky Reset	yes	aw	0
15	Completer Abort	Not supported, fixed value 0.	ne	0	0
14	Completion Tim- eout	not send error message to RC, not lock First Error Pointer, not logged in the Header Log register. Reset by PEX Sticky Reset	yes	aw	0
13	Flow Control Protocol Error	not send error message to RC, not lock First Error Pointer, not logged in the Header Log register. Reset by PEX Sticky Reset	yes	aw	0
12	Poisoned TLP	not send error message to RC, not lock First Error Pointer, not logged in the Header Log register. Reset by PEX Sticky Reset	yes	aw	0
11:5	Reserved				
4	Data Link Proto- col Error	not send error message to RC, not lock First Error Pointer, not logged in the Header Log register. Reset by PEX Sticky Reset	yes	aw	0
3:1	Reserved				
0	Training Error	Not supported, fixed value 0.	ne	0	0

Bit	Name	Description	Write	Read	Reset value
Uncorre	ectable Error Severity	y Register			
31:21	Reserved				
20	Unsupported Request Error	Non-Fatal Reset by PEX Sticky Reset	yes	aw	0
19	ECRC Error Severity	Not supported, fixed value 0.	ne	0	0
18	Malformed TLP	Fatal Reset by PEX Sticky Reset	yes	aw	1
17	Receiver Over- flow	Fatal Not supported, fixed value 1.	ne	1	1
16	Unexpected Completion	Non-Fatal Reset by PEX Sticky Reset	yes	aw	0
15	Completer Abort	Non-Fatal Not supported, fixed value 0.	yes	aw	0
14	Completion Tim- eout	Non-Fatal Reset by PEX Sticky Reset	yes	aw	0
13	Flow Control Protocol Error	Non-Fatal Reset by PEX Sticky Reset	yes	aw	1
12	Poisoned TLP	Non-Fatal Reset by PEX Sticky Reset	yes	aw	0
11:5	Reserved				
4	Data Link Proto- col Error	Fatal Reset by PEX Sticky Reset	yes	aw	1
3:1	Reserved				
0	Training Error	Not supported, fixed value 1.	ne	1	1

3.2.4.33 Correctable Error Status/Mask Register

Address: 0x0110:0x0114Width [bit]:2 x 32

Bit	Name	Description	Write	Read	Reset value
Correcta	able Error Status Re	gister			
31:13	Reserved				
12	Replay Timer Timeout	indicates replay timer expired, REPLAY_NUM did not rollover. Reset by PEX Sticky Reset	sh	value	0
11:9	Reserved				
8	REPLAY_NUM Rollover	indicates 4 consecutive replays were transmitted. Reset by PEX Sticky Reset	sh	value	0
7	Bad DLLP	1: indicates - LCRC Error detected in received DLLP or - DLLP is larger than 6 B. Reset by PEX Sticky Reset	sh	value	0
6	Bad TLP	indicates LCRC Error detected in received TLP or Sequence number error detected in received TLP. Reset by PEX Sticky Reset	sh	value	0
5:1	Reserved				
0	Receiver Error	1: indicates Overflow/Underrun or 8 B/10 B decode error or Disparity Error or Framing Error - STP or SDP without END or EDB to previous frame or Framing error - unexpected K code (special symbols for framing and link management, refer to PCI Express Base specification) in a middle of a frame (not END or EDB). Reset by PEX Sticky Reset	sh	value	0

Bit	Name	Description	Write	Read	Reset value
Correct	able Error Mask Reg	ister			
31:13	Reserved				
12	Replay Timer Timeout	1: not send error message to RC Reset by PEX Sticky Reset	yes	aw	0
11:9	Reserved				
8	REPLAY_NUM Rollover	1: not send error message to RC Reset by PEX Sticky Reset	yes	aw	0
7	Bad DLLP	1: not send error message to RC Reset by PEX Sticky Reset	yes	aw	0
6	Bad TLP	1: not send error message to RC Reset by PEX Sticky Reset	yes	aw	0
5:1	Reserved				
0	Receiver Error	1: not send error message to RC	yes	aw	0

3.2.4.34 Advanced Error Capabilities and Control Register

Address: 0x0118Width [bit]: 32

Bit	Name	Description	Write	Read	Reset value
Advance	ed Error Capabilities				
31:9	Reserved				
8	ECRC Check Enable	1: enables ECRC checking. Not supported, fixed value 0.	ne	0	0
7	ECRC Check Capable	indicates that the device is capable of checking ECRC. Not supported, fixed value 0.	ne	0	0
6	ECRC Genera- tion Enable	1: enables ECRC generation. Not supported, fixed value 0.	ne	0	0
5	ECRC Genera- tion Capable	indicates that the device is capable of generating ECRC. Not supported, fixed value 0.	ne	0	0
4:0	First Error Pointer	The First Error Pointer is a read-only register that identifies the bit position of the first unmasked error reported in the Uncorrectable Error Status register. Note that the reset value 0x1f corresponds to the bit position of the reserved register bit 31 in Uncorrectable Error Status Register. Reset by PEX Sticky Reset	ne	value	0x1f

3.2.4.35 Header Log Register

Address: 0x011c:0x0128Width [bit]:4 x 32

Reloadable out of the SPI Flash Memory or TWSI EEPROM.

Bit	Name	Description	Write	Read	Reset value
Header I	Header Log Register				
127:0	Header Log	Header of TLP associated with an error if this error is the first unmasked uncorrectable error detected. Reset by PEX Sticky Reset	ne	value	0

3.2.4.36 Transaction Layer Control Register

Address: 0x0200Width [bit]: 32

Reloadable out of the SPI Flash Memory or TWSI EEPROM.

Bit	Name	Description	Write	Read	Reset value
Transac	tion Layer Control F				
31:5	Reserved				
1:0	Max_outstand	Maximum outstanding NP requests. 0x0: 1 request 0x1: 2 requests 0x2: 4 requests 0x3: 8 requests	yes	aw	0x03

3.2.4.37 Transaction Layer Status Register

Address: 0x0204Width [bit]: 32

Bit	Name	Description	Write	Read	Reset value
Transact	Transaction Layer Status Register				
31:0	Reserved				

3.2.4.38 Data Link Layer Control Register

Address: 0x0208Width [bit]: 32

Reloadable out of the SPI Flash Memory or TWSI EEPROM.

Bit	Name	Description	Write	Read	Reset value
Data Lin	Data Link Layer Control Register				
31:0	Reserved				

3.2.4.39 Data Link Layer Status Register

Address: 0x020cWidth [bit]: 32

Reloadable out of the SPI Flash Memory or TWSI EEPROM.

Bit	Name	Description	Write	Read	Reset value
Data Lin	Data Link Layer Status Register				
31:0	Reserved				

3.2.4.40 PE Physical Layer Control Register

Address: 0x0210Width [bit]: 32

Reloadable out of the SPI Flash Memory or TWSI EEPROM.

Bit	Name	Description	Write	Read	Reset value
PE Phys	sical Layer Control R				
31:16	Reserved				
15:8	N_FTS	Number of FTS Ordered-Sets needed by the device for L0s exit to L0. Advertised in transmitted TSs.	yes	aw	0x14
7:0	Reserved				

CONFIDENTIALDocument Classification: Proprietary Information

3.2.4.41 PE Physical Layer Status Register

Address: 0x0214Width [bit]: 32

Reloadable out of the SPI Flash Memory or TWSI EEPROM.

Bit	Name	Description	Write	Read	Reset value
PE Phys	PE Physical Layer Status Register				
31:0	Reserved				

3.2.4.42 PE Completion Timeout Register

Address: 0x0220Width [bit]: 32

Bit	Name	Description	Write	Read	Reset value
PE Completion Timeout Register					
31:16	Reserved				
15:0	CmpTOThrshld	Completion Timeout Threshold. Controls the size of the completion timeout time interval. NOTE: Time scale: 256 * symbol_time = 1 μs 0x0: Disabled. No timeout mechanism on NP TLPs. Minimum Value: 40 (40 μs) Maximum Value: 25 K (25 ms)	yes	aw	0x2710 (10000 or 10 ms)

3.2.4.43 PE Flow Control Register

Address: 0x0224Width [bit]: 32

Reloadable out of the SPI Flash Memory or TWSI EEPROM.

Bit	Name	Description	Write	Read	Reset value
PE Flow Control Register					
31:24	PHInitFC	Posted Headers Flow Control Credit Initial Value.	yes	aw	0x02
23:16	NPHInitFC	Non-Posted Headers Flow Control Credit Initial Value.	yes	aw	0x02
15:8	CHInitFC	Completion Headers Flow Control Credit Initial Value.	yes	aw	0
7:0	FCUpdateTO	Flow Control Update Timeout. Controls the Flow Control update interval period. NOTE: Time scale: 64 * symbol_time = 250 ns. 0x0: Disabled. No timeout mechanism on update FC. Minimum Value: 120 (30 µs) Maximum Value: 180 (45 µs)	yes	aw	0x078 (120 or 30 μs)

3.2.4.44 PE Ack Timer for 1x Link

Address: 0x0228Width [bit]: 32

Bit	Name	Description	Write	Read	Reset value
PE Ack Timer for 1x Link					
31:16	AckRplyTOX1	Ack Replay Timer Timeout Value for x1. NOTE: Timescale: symbol_time = 4 ns Minimum Value: 711 (2.84 μs) Maximum Value: 64K-1 (262 μs)	yes	aw	0x0320 (800)
15:0	AckLatTOX1	Ack Latency Timer Timeout Value for x1 link. Used when PHY link width auto-negotiation result is x1. NOTE: Time scale: symbol_time = 4 ns Minimum Value: 4 (16 ns) Maximum Value: 237 (948 ns)	yes	aw	0x04

3.3 Control Register File

The Control Register File demonstrates all registers accessible to the host, independent of their specific physical location.

It may be mapped in the 32-bit I/O space as well as in the 32-bit memory space depending on **Base Address Register (1st)** and **Base Address Register (2nd)**.

Mapping to the I/O space may be disabled by En IO Mapping.

Write operations to reserved or not implemented registers are completed normally on the bus and the data is discarded.

Read operations to reserved or not implemented registers are completed normally on the bus, read data is undefined

If **SW** Reset is set, it is not recommended to access the **Control Register File** except for accessing the **Control Register** (all internal or external devices are in reset state).

Write operations are completed normally on the bus and the data is discarded.

Read operations are completed normally on the bus and a data value of 0 is returned.

In order to prevent setup and hold time violations, all signals and/or events routed through read registers are synchronized to **CLK** (PCI).

All signals and/or events routed through **INTA#** are glitch free and, except for those directly related to **CLK** (PCI), independent of **CLK** (PCI).

3.3.1 Overview and Address Map

The table below depicts the layout of the Control Register File.

If the Control Register File is mapped into the memory space, it covers a memory range of 16 KB. All registers may be accessed directly.

If the Control Register File is mapped into the I/O space, it covers an I/O range of 256 byte. The 16 KB range of the Control Register File is segmented into 128 128-byte blocks.

Block 0 is mapped permanently into the lower half of the 256 byte I/O range.

Block 0 - 127 are mapped into the upper half of the 256 byte I/O range as defined by the Register Address Port (RAP). As a side effect, register addressing with the RAP may also be used, if the Control Register File is mapped into the memory space

Column 'STI' marks registers residing behind the same Target Interface (all registers within the same row separation line).

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Address	STI	Block
Reserved	Reserved	Reserved	Register Address Port (RAP)	0x0000		0
Power Control		Control/Status Regis	ster	0x0004		
	Interrupt Sc	ource Register		0x0008		
	Interrupt M	lask Register		0x000c		
	Interrupt Hardware	Error Source Regist	er	0x0010		
	Interrupt Hardware	Error Mask Registe	er	0x0014		
	Special Interrupt	Source Register 1		0x0018		
	Special Interrupt	Source Register 2		0x001c		
	Special Interrupt	Source Register 3		0x0020		
	Enter Interrupt Ser	vice Routine Registe	er	0x0024		
	Leave Interrupt Service Routine Register					
	Interrupt Co	Control Register		0x002c		
	Reserved (legacy)					
				0x005c		
	SPI Flash Memo	ory Control Register		0x0060		
	SPI Flash Memo	ry Address Register		0x0064		
	SPI Flash Mem	ory Data Register		0x0068		
S	PI Flash Memory Ve	ndor/Device ID Reg	ister	0x006c		
SP	l Flash Memory Load	der Configuration Re	egister	0x0070		
SF	PI Flash Memory VP	D Configuration Reg	gister	0x0074		
	SPI Flash Memory Opcode 1 Register			0x0078		
	SPI Flash Memory Opcode 2 Register					
				1	1	
		Window er <31:0>		0x0080 : 0x00fc		1
Note: If RAP	= 1, read values are	e ZERO, write cycles	s have no effect			
•				•		

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Address	STI
MAC Addr_1<3>	MAC Addr_1<3> MAC Addr_1<2>		MAC Addr_1<0>	0x0100	
Reserved Reserved		MAC Addr_1<5>	MAC Addr_1<4>	0x0104	
Reserved	Reserved	MAC Addr_2<5>	MAC Addr_2<4>	0x010c	
	MAC Add	dress for maintenand	ce		
MAC Addr_3<3>	MAC Addr_3<2>	MAC Addr_3<1>	MAC Addr_3<0>	0x0110	
Reserved	Reserved	MAC Addr_3<5>	MAC Addr_3<4>	0x0114	
Chip ID	Chip Revision	PMD Type	Connector Type	0x0118	
•					
Eprom<3>	Eprom<2> HW Resources	Eprom<1> Clock Gating Reg- ister	Eprom<0> RAM Size	0x011c	
Reserved	Clock Divider value	Clock Divider Control		0x120	
Reserved (legacy) 0x012					
: 0x01					
					1
		IRQ Timer			
	IRQ Time	r Init Value		0x0130	STI
	IRQ	Timer		0x0134	
Reserved	Reserved	IRQ Timer Test	IRQ Timer Control	0x0138	
	Res	erved		0x013c	
	IPO	Moderation Timer			
		Timer Init Value		0x0140	STI
					311
IRQ Moderation Timer 0x0144					
Reserved	Reserved	IRQ Moderation Timer Test	IRQ Moderation Timer Control	0x0148	STI
Interrupt Moderation Mask Register 0x0				0x014c	
Interrupt Hardware Error Moderation Mask Register 0x0150					
<u> </u>	Dee	erved		0x0154	

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Address	STI	Block
						2
	Reserved	Test Control Reg 2	Test Control Reg 1	0x0158		
	General Purp	oose IO Register		0x015c		
TWSI (HW) Control Register 0x0						
	TWSI (HW) Data Register		0x0164		
	TWSI (HW) IRQ Register		0x0168		
	TWSI (S	W) Register		0x016c		
PEX PH	Address Register	PEX PHY D	ata Register	0x0170		
	Re	served		0x0174		
	Reserv	ed (legacy)		0x0178		
	Re	served		0x017c		
	RAN	// Random Registers				3
	RAM	Address		0x0180	STI	
	RAM Data F	ort/lower dword		0x0184		
RAM Data Port/upper dword						
	RAM Data F	on/upper awora		0x0188		
		served		0x018c		
	Re					
	RAM Inter	served face Registers	Timeout Init Value 0 (Write SM Rx1)		STI	_
	RAM Inter	served face Registers Timeout Init Value 1 (Write SM Tx/a1) Timeout Init Value		0x018c 0x190 0x0194	STI	_
3 (Read SM F	RAM Inter Ilue	served face Registers Timeout Init Value 1 (Write SM Tx/a1) Timeout Init Value	0 (Write SM Rx1) Timeout Init Value	0x018c 0x190 0x0194	STI	_
3 (Read SM F	RAM Inter Ilue	face Registers Timeout Init Value 1 (Write SM Tx/a1) Timeout Init Value 5 (Read SM Tx/s1)	0 (Write SM Rx1) Timeout Init Value	0x018c 0x190 0x0194	STI	_
3 (Read SM F	Remark RAM Intervalue Timeout Init Value (X1) 2 (Write SM Tx/s1) Reserved)	face Registers Timeout Init Value 1 (Write SM Tx/a1) Timeout Init Value 5 (Read SM Tx/s1)	0 (Write SM Rx1) Timeout Init Value 4 (Read SM Tx/a1) Timeout Timer	0x018c 0x190 0x0194 0x0198	STI	_
	Remark RAM Intervalue Timeout Init Value 2 (Write SM Tx/s1 Reserved) Reserved Reserved Timer Test	face Registers Timeout Init Value 1 (Write SM Tx/a1) Timeout Init Value 5 (Read SM Tx/s1) served	0 (Write SM Rx1) Timeout Init Value 4 (Read SM Tx/a1) Timeout Timer	0x018c 0x190 0x0194 0x0198 0x019c	STI	3

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Address	STI	Block
	Т	ransmit Arbiter				4
	Interval Tim	er Init Value		0x0200	STI	
	Interva	ıl Timer		0x0204		
	Limit Count	er Init Value		0x0208		
	Limit C	Counter		0x020c		
Reserved	Timer/ Counter Status	Timer/ Counter Test	Timer/ Counter Control	0x0210		
	Reserved					
	RSS	Key				
	RSS	Key 0		0x0220		
	RSS Key 1					
	RSS Key 2					
	RSS	Key 3		0x022c		
	Rese	erved		0x0230		
				0x027c		
	Rese	erved		0x0294		5
				: 0x029c		
	Rese	erved		0x02b0		
				: 0x02fc		
				_		_
Reserved	Reserved	Reserve	d (legacy)	0x0300		6
				0x037c		
				1		1
	PCI Configuration Re	gister File (lower ha	lf)	0x0380 :		7
				0x03fc		

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Address	STI	Block
		Receive Queue				8
	Curre	nt Receive Descriptor	Г			
Receive	e Buffer Control	Receive Buff	er Byte Count	0x0400		
	RSS Has	h Checksum		0x0404		
	Receive Buffer Address, lower dword					
	Receive Buffer A	0x040c				
	Receive	0x0410				
	Receive	Timestamp		0x0414		
	TCP/IP Ched	ksum Extension				
TCP	Checksum 2	TCP CI	TCP Checksum			
Start positio	n, TCP Checksum 2	Start position,	Start position, TCP Checksum			
		1			I	
F	Reserved	VLA	N Tag	0x0420		
F	Reserved	Done Index		0x0424		
	Request Addı	ess, lower dword		0x0428		
	Request Addr	ess, upper dword		0x042c		
F	Reserved	Request	Request Byte Count			
	BMU Contro	/Status Register		0x0434		
	BMU Te	est Register		0x0438		
	BMU State M	lachine Register		0x043c		
Reserved	FIFO Alignment	FIFO w	atermark	0x0440		
Reserved	FIFO read shadow level					
Reserved	FIFO read level	Reserved	FIFO read pointer	0x0448		
FIFO write shadow leve	FIFO write level	FIFO write shadow pointer	FIFO write pointer	0x044c		

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Address	STI	Block
	RX Pre	efetch Unit				8
	Prefetch C	ontrol Register		0x0450		
F	Reserved	Last	Index	0x0454		
	List Start	Address, low		0x0458		
	List Start Address, high					
F	Reserved	Get	Index	0x0460		
F	Reserved	Put	Index	0x0464		
	Reserved			0x0468		
				: 0x046c		
FIFO writ	te shadow pointer	Reserved	FIFO write pointer	0x0470		
	Reserved		FIFO read pointer	0x0474		
Master	Request nbytes	Reserved	FIFO watermark	0x0478		
sh	FIFO adow level	Reserved	FIFO level	0x047c		
		Reserved		<u> </u>		9
Reserved	Reserved	Res	Reserved			10
				0x05fc		11

Byte<3>		Byte<2>	Byte<1>	Byte<0>	Address	STI	Block
		Asynchro	nous Transmit Que	eue			13
		Current	Transmit Descripto	or			
Transn	nit Bu	ffer Control	Transmit But	ffer Byte Count	0x0680		
		Rese	erved		0x0684		
		Transmit Buffer Ad	dress, lower dword		0x0688		
	Transmit Buffer Address, upper dword						
	Transmit Status Word						
	TCP/IP Checksum Extension						
	Reserved			m Init Value	0x0694		
TC	P Su	m Start	TCP S	um Write	0x0698		
	Reserved						
	Rese	rved	VLA	N Tag	0x06a0		
	Rese	rved	Done Index		0x06a4		
		Request Addre	ss, lower dword		0x06a8		
		Request Addre	ss, upper dword		0x06ac		
	Rese	rved	Request	Byte Count	0x06b0		
		BMU Control/S	Status Register		0x06b4		
		BMU Tes	t Register		0x06b8		
		BMU State Ma	chine Register		0x06bc		
Reserved		FIFO Alignment	FIFO w	vatermark	0x06c0		
Reserved	served FIFO write FIFO write shadow level shadow pointer		0x06c4				
Reserved		FIFO write level	Reserved	FIFO write pointer	0x06c8		
Reserved		FIFO read level	Reserved	FIFO read pointer	0x06cc		

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Address	STI	Block
	Т	XA Prefetch Unit				13
	Prefetch Co	ontrol Register		0x06d0		
R	eserved	Las	t Index	0x06d4		
	0x06d8					
	0x06dc					
R	eserved	Ge	Index	0x06e0		
R	Reserved Put Index			0x06e4		
	Res	served		0x06e8		
				: 0x06ec		
FIFO write	shadow pointer	Reserved	FIFO write pointer	0x06f0		
	Reserved		FIFO read pointer	0x06f4		
Master F	Master Request nbytes		FIFO watermark	0x06f8		
sha	FIFO dow level	Reserved	FIFO level	0x06fc		

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Address	STI	Block
		Receive Rambuffer				16
	Receive Ra	mbuffer Start Addres	S	0x0800	STI	
	Receive Rambuffer End Address					
	Receive Buffer Write Pointer					
	Receive Buffer Read Pointer					
	Receive Rambuffer I	Jpper Threshold/Paus	se Packets	0x0810		
	Receive Rambuffer Lower Threshold/Pause Packets 0x0814					
	Receive Rambuffer	Upper Threshold/Hig	h Priority	0x0818		
	Receive Rambuffer	Lower Threshold/Hig	h Priority	0x081c		
	Receive Ra	mbuffer Packet Count	er	0x0820		
	Receiv	e Rambuffer Level		0x0824		
	Receive R	ambuffer Control/Test	:	0x0828		
		Reserved		0x082c		
				0x087c		
					<u> </u>	
		Reserved				17

	Byte<1>	Byte<0>	Address	STI	Block
	Reserved				18
	Reserved		0x0900	STI	
	Reserved		0x0904		
	Reserved		0x0908		
	Reserved		0x090c		
	0x0910				
	Reserved		0x0914		
	0x0918				
	0x091c				
	Reserved		0x0920		1
	Reserved		0x0924		1
	Reserved		0x0928		
	Reserved		0x092c		
			: 0x093c		
					_
	Reserved				
	Reserved		0x0940	STI	
	Reserved		0x0944		
	Reserved		0x0948		
	Reserved		0x094c		
	Reserved		0x0950		
			: 0x095c		
	Reserved		0x0960		1
	Reserved		0x0964		1
	Reserved		0x0968		1
	Reserved 0x096c :		<u> </u>		
	0x097c				
		Reserved	Reserved	Reserved 0x0900 Reserved 0x0904 Reserved 0x090c Reserved 0x0910 Reserved 0x0914 Reserved 0x0914 Reserved 0x0916 Reserved 0x091c Reserved 0x0920 Reserved 0x0924 Reserved 0x0928 Reserved 0x092c 0x093c 0x093c Reserved 0x0940 Reserved 0x0944 Reserved 0x0942 Reserved 0x0942 Reserved 0x0946 Reserved 0x0960 Reserved 0x0968 Reserved 0x0968 Reserved 0x0960	Reserved 0x0900 STI Reserved 0x0904 Reserved Reserved 0x0908 Reserved Reserved 0x0900 Reserved Reserved 0x0910 Reserved Reserved 0x0918 Reserved Reserved 0x0910 Reserved Reserved 0x0920 Reserved Reserved 0x0924 Reserved Reserved 0x0928 Reserved Reserved 0x0920 STI Reserved 0x0940 STI Reserved 0x0944 Reserved Reserved 0x0940 STI Reserved 0x0940 STI Reserved 0x0940 STI Reserved 0x0950 STI 0x0950 STI STI Reserved 0x0960 STI Reserved 0x0960 STI Reserved 0x0960 STI Reserved 0x0960 STI <t< td=""></t<>

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Address	STI	Block	
	Asynchronous Transmit Rambuffer						
	Transmit Rambuffer Start Address						
	Transmit Rambuffer End Address 0x0a84						
	Transmit E	Buffer Write Pointer		0x0a88			
	Transmit Buffer Read Pointer 0x0a8c						
	Reserved 0x0a90						
				: 0x0a9c			
	Transmit Ram	nbuffer Packet Count	er	0x0aa0			
	Transmit	Rambuffer Level		0x0aa4		1	
	Transmit Ra	ambuffer Control/Test		0x0aa8			
	1	Reserved		0x0aac			
				: 0x0afc			

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Address	STI	Block
		Receive MAC FIFO)			24
	Re	served (legacy)		0x0c00		
				: 0x0c3c		
	Receive M	AC FIFO End Addres	SS	0x0c40	STI	
	Receive MAC F	0x0c44				
	Receive M	0x0c48				
	Receive M	0x0c4c				
	Receive MA	0x0c50				
	Receive Truncation Threshold					
	0x0c58					
	Receive	0x0c5c				
	Receive M	IAC FIFO Write Point	er	0x0c60		
		Reserved		0x0c64		1
	Receive N	MAC FIFO Write Leve	el	0x0c68		
		Reserved		0x0c6c		
	Receive M	IAC FIFO Read Point	er	0x0c70		1
		Reserved		0x0c74		
	Receive N	MAC FIFO Read Leve	el	0x0c78		
		Reserved		0x0c7c		1
				<u> </u>	•	•
		Reserved				25
	Re	served (legacy)		0x0c80		
				: 0x0cbc		

Byte<2>	Byte<1>	Byte<0>	Address	STI	Block
	Transmit MAC FIF	О			26
Re	served (legacy)		0x0d00		
			: 0x0d28		
	0x0d2c				
Transmit N	0x0d40	STI	1		
Transmit MAC F	0x0d44				
Transmit I	0x0d48				
	Reserved		0x0d4c		
			: 0x0d58		
Transmit	VLAN Type Register	r	0x0d5c		
Transmit N	MAC FIFO Write Poin	ter	0x0d60		
Transmit MAC	FIFO Write Shadow	Pointer	0x0d64		
Transmit	MAC FIFO Write Lev	el	0x0d68		
	Reserved		0x0d6c		
Transmit N	IAC FIFO Read Poin	ter	0x0d70		
Transmit M.	AC FIFO Restart Poi	nter	0x0d74		
Transmit	MAC FIFO Read Lev	el	0x0d78		
	Reserved		0x0d7c		
				1	F
	Reserved		0x0d80		27
			0x0dfc		
	Transmit M	Transmit MAC FIF Reserved (legacy) Reserved Transmit MAC FIFO End Addre Transmit MAC FIFO Almost Empty TI Transmit MAC FIFO Control/Te Reserved Transmit VLAN Type Register Transmit MAC FIFO Write Poin Transmit MAC FIFO Write Shadow Transmit MAC FIFO Write Leve Reserved Transmit MAC FIFO Read Poin Transmit MAC FIFO Restart Poin Transmit MAC FIFO Read Lev Reserved	Transmit MAC FIFO Reserved (legacy) Reserved Transmit MAC FIFO End Address Transmit MAC FIFO Almost Empty Threshold Transmit MAC FIFO Control/Test Reserved Transmit VLAN Type Register Transmit MAC FIFO Write Pointer Transmit MAC FIFO Write Shadow Pointer Transmit MAC FIFO Write Level Reserved Transmit MAC FIFO Read Pointer Transmit MAC FIFO Restart Pointer Transmit MAC FIFO Read Level Reserved	Transmit MAC FIFO	Transmit MAC FIFO

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Address	STI	Block
	De	scriptor Poll Time	٢			28
	Timer	Init Value		0x0e00	STI	
	Т	imer		0x0e04		
Reserved	Timer Test	Reserved	Timer Control	0x0e08		
	Res	served		0x0e0c		
		ïmestamp Timer				<u> </u>
	Res	0x0e10	STI			
	Timer					
Reserved	Timer Test	Reserved	Timer Control	0x0e14 0x0e18		
		served		0x0e1c		
						1
		Polling Unit				
	Poll	Control		0x0e20		
Re	eserved	List	Last Index	0x0e24		
	List Start	Address, low		0x0e28		
	List Start A	Address, high		0x0e2c		
	Res	served		0x0e30		
				0x0e3c		
						_
		Reserved				
		Reserved				_
		served		0xe40		
		served		0xe44		
	Res	served		0x0e48 :		
				0x0e5c		
		Reserved				
		served		0xe60		
		served		0xe64		
<u> </u>	Res	served		0xe68		

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Address	STI	Block
	Host Status and Command Register 0					28
	Data Register 1					
	Data Register 2					
	Da	ata Register 3		0xe78		
	Data Register 4					
				1		•

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Address	STI	Block
		Status BMU				29
	Status BN	1U Control		0x0e80		
Res	served	Las	t Index	0x0e84		
	List Start A	ddress, low		0x0e88		
	List Start A	ddress, high		0x0e8c		
Res	served	TXA1 R	eport Index	0x0e90		
Res	served	Res	served	0x0e94		
Res	served	TX Index	c Threshold	0x0e98		
Res	served	Put	Index	0x0e9c		
	FIFO con	trol/status				
	Reserved		FIFO write pointer	0x0ea0		
	Reserved		FIFO read pointer	0x0ea4		
	Reserved		FIFO level	0x0ea8		
Reserved		FIFO ISR watermark	FIFO watermark	0x0eac		
		Level Timer	•			
	Level Time	er Init Value		0x0eb0	STI	
	Level Tim	er Counter		0x0eb4		
Reserved	Level Timer Test	Reserved	Level Timer Ctrl	0x0eb8		
	Rese	erved	•	0x0ebc		
		TX Timer				
	TX Timer	Init Value		0x0ec0	STI	
	TX Time	r Counter		0x0ec4		
Reserved	TX Timer Test	Reserved	TX Timer Control	0x0ec8		
	Rese	erved		0x0ecc		
		ISR Timer				
	ISR Time	r Init Value		0x0ed0	STI	1
	ISR Time	er Counter		0x0ed4		
Reserved	ISR Timer Test	Reserved	ISR Timer Ctrl	0x0ed8		1
	Rese	erved		0x0edc		1
	Rese	erved		0x0ee0 0x0efc		

Page 124

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Address	STI	Block
	MAC and	PHY Control Registe	ers			30
	Reserved		MAC Control	0x0f00	STI	
	PHY MUX Register		PHY Control	0x0f04		
	Reserved		MAC Interrupt Source	0x0f08		
	Reserved MAC In Mac			0x0f0c		
	Reserved Link Control			0x0f10		
	Rese	erved		0x0f14 : 0xf1c		
	Wake On LAN (Control Registers				-
Match Result	Match Control	WOL Con	itrol/Status	0x0f20	STI	-
	MAC Add	dress Low		0x0f24		1
Reserved	PME Match Enable	MAC Add	dress High	0x0f28		-
	Reserved		Pattern Read Pointer	0x0f2c		
Pattern 3 Length	Pattern 2 Length	Pattern 1 Length	Pattern 0 Length	0x0f30		
Reserved	Pattern 6 Length	Pattern 5 Length	Pattern 4 Length	0x0f34		
Pattern 3 Counter	Pattern 2 Counter	Pattern 1 Counter	Pattern 0 Counter	0x0f38		
Reserved	Pattern 6 Counter	Pattern 5 Counter	Pattern 4 Counter	0x0f3c		
	Rese	erved		0x0f40		
				: 0xf7c		
	Rese	erved		0x0f80		31
				: 0x0ffc		1
	Pattern RAM				1	32
	256 words x 32 bit					: 39
		n RAM		0x1400		40
	256 word	ls x 32 bit		0x18fc		49

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Address	STI	Block
		•		0x1900		50
				: 0x1984		: 51
	Res	erved		0x1988		
				: 0x19fc		
	Res	erved		0x1a00		52
				: 0x1bfc		: 55
	Configuration	n Register File		0x1c00		56
				: 0x1e7c		60
	Res	erved		0x1e80		61
				0x1ffc		63
						•
Reserved	Reserved	Res	erved (legacy)	0x2000		64
				0x27fc		79
Reserved	Reserved	(registers	Register <0x00> according to GMAC datasheet)	0x2800		80 : 85
Reserved	Reserved	GMAC	Register <0x01>	0x2804		
Reserved	Reserved	GMAC	Register <0x02>	0x2808		
		GMAC	: Register <0x96>	: 0x2a58		
Reserved	Reserved	GMAC	Register <0x97>	0x2a5c		
	Res	erved		0x2a60		
				0x2afc		
	Res	erved		0x2b00		86
				: 0x2ffc		95
				l	1	ı
Reserved	Reserved	Res	erved (legacy)	0x3000		96
				0x37fc		: 111

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Address	STI	Block
	Rese	erved		0x3800		112
				: 0x3ffc		: 127

3.3.2 Registers

3.3.2.1 Register Address Port (RAP)

Address: 0x0000 Width [bit]: 8

Bit	Name	Description	Write	Read	Reset (SW)
Register	Address Port (RAP)				
31:7	Reserved				
6:0	RAP	Specifies one out of blocks 0 to 127, which is mapped to the upper half of the 256 byte I/O range. 0: block 0 0x7f: block 127	yes	aw	0

3.3.2.2 Control/Status Register

Address: 0x0004 Width [bit]: 24

Bit	Name	Description	Write	Read	Reset
Control/	Status Register				
	Status				
23:18	Reserved				
17	Vmain Available	Vmain Available is the Vmain Pin of the PCI Bus used as input with a weak Pulldown. 0: no Vmain available 1: Vmain available	ne	value	value

Bit	Name	Description	Write	Read	Reset
16	Vaux Available	Vaux Available is the Vaux Pin of the PCI Bus used as input with a weak Pulldown. 0: no Vaux available 1: Vaux available	ne	value	value
	Commands				
15:14	Reserved				
13	Reserved	Reserved	exec	0b10	0
12	Reserved			0b01	1
11:10	Reserved		exec	0b10	0
				0b01	1
9	LED<0>On	LED On/Off	exec	0b10	0
8	LED<0> Off	Commonly used as indication for "Driver loaded"		0b01	1
7	Set IRQ SW	Sets and clears Interrupt Request from	exec	0b10	0
6	Clear IRQ SW	SW		0b01	1
5	Stop Master Done	As soon as the Master Statemachine is in the idle state after Stop Master is set, Stop Master Done is asserted. Stop Master Done is reset to 0 by resetting Stop Master .	ne	value	0
4	Stop Master	If Stop Master is set, all requests from the BMUs except for the one being serviced at the moment, are masked. The Master Statemachine reaches the idle state after the current request is serviced. Stop Master has to be reset by the SW after the BMUs are reset. If the BMUs are not reset, the PCI device resumes master action at the point, when it was interrupted by Stop Master .	yes	aw	0 (HW)
3	Master Reset Clear	Set/Clear Master Reset. If Master Reset is set, all devices related	exec	0b10	0
2	Master Reset Set	to the master interface (BMUs, FIFOs, State machines) are in their reset state. Executed, if appropriate bit is set to 1.		0b01	1 (SW)

Bit	Name	Description	Write	Read	Reset
1	SW Reset Clear	Set/Clear SW Reset.	exec	0b10	0
0	SW Reset Set	Executed, if appropriate bit is set to 1.		0b01	1
		If SW Reset is set, all internal and external devices are in their reset state.			(HW)

3.3.2.3 Power Control Register

Address: 0x0007 Width [bit]: 8

Bit	Name	Description	Write	Read	Reset (Power On)
Power C	ontrol Register				
7	Switch Vaux Enable	Switch Vaux Enable 1 = Output Switch Vaux pin enabled 0 = Output Switch Vaux pin disabled	exec	0b10	0
6	Switch Vaux Disable			0b01	1
5	Switch VCC Enable	Switch VCC Enable 1 = Output Switch VCC pin enabled	exec	0b10	0
4	Switch VCC Disable	0 = Output Switch VCC pin disabled		0b01	1
3	Switch Vaux On	Switch Vaux On/Off	exec	0b10	0
2	Switch Vaux Off	1 = Power supply from Vaux pin on 0 = Power supply from Vaux pin off		0b01	1
1	Switch VCC On	Switch VCC On/Off	exec	0b10	0
0	Switch VCC Off	1 = Power supply from VCC pins on 0 = Power supply from VCC pins off		0b01	1

3.3.2.4 Interrupt Source Register

Address: 0x0008 Width [bit]: 32

If set to ONE, interrupt is pending

Bit	Name	Description	Write	Read	Reset (SW)
	Interrupt Source R	egister			
	General Interrupts				
31	HW Interrupt	At least one of the HW Interrupts occurred (Interrupt HW Error Source Register), which is not masked by the according Mask register. No HW Interrupt active	ne	value	0
30	Status BMU	Interrupt on status burst	ne	value	0
29	Reserved	Reserved	ne	value	0
28	Reserved				
27	IRQ Polling CHK	Check Interrupt by the Polling Unit	ne	value	0
26	IRQ TWSI Ready	Interrupt on completion of TWSI transfer	ne	value	0
25	IRQ SW	Interrupt set by SW in Control Register	ne	value	0
24	IRQ Timer	Interrupt Timer	ne	value	0
23:16	Reserved				
	Interrupts				
7:5	Reserved				
4	IRQ PHY	Interrupt from PHY	ne	value	0
3	IRQ MAC	Interrupt from MAC	ne	value	0
2	IRQ CHCK Rx	Interrupt coding error of descriptor (Rx Queue)	ne	value	0
1	Reserved		ne	value	0
0	IRQ CHCK TxA	Interrupt Coding Error of descriptor (asynchronous Tx Queue)	ne	value	0

3.3.2.5 Interrupt Mask Register

Address: 0x000c Width [bit]: 32

Each bit position defines, if the dedicated interrupt is propagated to the internal interrupt line **irq**. The enable bits have the same bit positions as in the **Interrupt Source Register**. Unused bit positions are treated like reserved.

If set to ONE, interrupt is enabled.

See also "Special Interrupt Source Register ".

Bit	Name	Description	Write	Read	Reset (SW)
	Interrupt Mask Reg	nterrupt Mask Register			
31:0	En IRQ xxx	Enable Interrupt xxx	yes	aw	0

3.3.2.6 Interrupt HW Error Source Register

Address: 0x0010 Width [bit]: 32

Bit	Name	Description	Write	Read	Reset (SW)
	Interrupt HW Error	Source Register			
	General Interrupts				
31:30	Reserved				
29	IRQ Timestamp Timer Overflow	Interrupt Timestamp Timer Overflow	ne	value	0
28	IRQ Sensor	Interrupt from sensor This external interrupt line is connected to the interrupt output of the Voltage/Temperature Sensor	ne	value	0
27	IRQ Master Error	Interrupt Master Error detected on master accesses Set, if DATAPERR, RTABORT or RM-ABORT are set.	ne	value	0
26	IRQ Status	Interrupt Status Exception Set, if PERR, RMABORT, RTABORT or DATAPERR are set.	ne	value	0

Bit	Name	Description	Write	Read	Reset (SW)
25	IRQ PE	PCI Express Interrupt Indication of occurrence of uncorrectable error(s) in PCI-Express mode	ne	value	0
24	IRQ NO PE	An error occurs in PCI-Express mode. Note: This is not a PCI-Express error!	ne	value	0
23:16	Reserved				
	HW Interrupts				
7:6	Reserved				
3	IRQ Par MAC	Interrupt Parity Error/MAC This interrupt is intended to indicate a panic event (hardware fault)	ne	value	0
2	IRQ PAR Rx	Interrupt Parity Error (RxQueue) This interrupt is intended to indicate a panic event (hardware fault)	ne	value	0
1			ne	value	0
0	IRQ TCP Length TxA1	Interrupt Length Mismatch (asynchronous Tx queue 1) with TCP segmentation	ne	value	0

3.3.2.7 Interrupt HW Error Mask Register

Address: 0x0014 Width [bit]: 32

Each bit position defines, if the dedicated interrupt is propagated to the Interrupt Line INTA#.

The enable bits have the same bit positions as in the **Interrupt HW Error Source Register.** Unused bit positions are treated like reserved.

Bits, which are dedicated to a potential second MAC are reserved, but their setting have no effect.

If set to ONE, interrupt is enabled.

Bit	Name	Description	Write	Read	Reset (SW)
	Interrupt Hardware	Interrupt Hardware Error Mask Register			
31:0	En IRQ xxx	Enable Hardware Interrupt xxx	yes	aw	0

3.3.2.8 Special Interrupt Source Register 1

Address: 0x0018 Width [bit]: 32

This register mirrors the **Interrupt Source Register** with special functionality adapted to typical SW handling. If the internal interrupt line **irq** is asserted, the read value is the same as in the **Interrupt Source Register**.

If the internal interrupt line **irq** is NOT asserted, the read value is 0.

If the internal interrupt line **irq** is asserted, reading the **Special Interrupt Source Register 1** masks all Interrupts. As a result the internal interrupt line **irq** is deasserted.

Bit positions are the same as in the Interrupt Source Register.

Bit	Name	Description	Write	Read	Reset (SW)
	Special Interrupt So				
31:0	IRQ xxx	Interrupt xxx When the internal interrupt line irq is asserted, read masks all interrupts. As a result the internal interrupt line irq is deasserted.	ne	value or 0	0

3.3.2.9 Special Interrupt Source Register 2

Address: 0x001c Width [bit]: 32

This register mirrors the **Interrupt Source Register** with special functionality adapted to typical SW handling. If the internal interrupt line **irq** is asserted, the read value is the same as in the **Interrupt Source Register**.

If the internal interrupt line irq is NOT asserted, the read value is 0.

If the internal interrupt line **irq** is asserted, reading the **Special Interrupt Source Register 2** masks all Interrupts and sets **isr status** flag **of Interrupt Control Register** to "ISR mode". As a result the internal interrupt line **irq** is deasserted.

Bit positions are the same as in the Interrupt Source Register.

CONFIDENTIALDocument Classification: Proprietary Information

Bit	Name	Description	Write	Read	Reset (SW)
	Special Interru	ıpt Source Register 2			
31:0	IRQ xxx	Interrupt xxx When the internal interrupt line irq is asserted, read masks all interrupts. As a result the internal interrupt line irq is deasserted. When irq is active, the isr status flag of Interrupt Control Register is set to "ISR mode".	ne	value or 0	0

3.3.2.10 Special Interrupt Source Register 3

Address: 0x0020 Width [bit]: 32

This register mirrors the Interrupt Source Register with special functionality adapted to typical SW handling.

If the internal interrupt line irq is asserted, the read value is the same as in the Interrupt Source Register.

If the internal interrupt line irq is NOT asserted, the read value is 0.

Reading the **Special Interrupt Source Register 3** always masks all interrupts. As a result the internal interrupt line **irq** is deasserted.

If the internal interrupt line irq is asserted, isr_status flag is set to "ISR mode".

Bit positions are the same as in the Interrupt Source Register.

Bit	Name	Description	Write	Read	Reset (SW)
	Special Interrupt Se	Special Interrupt Source Register 3			
31:0	IRQ xxx	Interrupt xxx Read masks all interrupts. As a result the internal interrupt line irq is deasserted. When irq is active, the irq status flag is set to "ISR mode".	ne	value or 0	0

3.3.2.11 Enter Interrupt Service Routine Register

Address: 0x0024 Width [bit]: 32

Bit	Name	Description	Write	Read	Reset (SW)
	Enter Interrupt Serv	Enter Interrupt Service Routine Register			
31:0	Enter ISR Reg	Read: isr_status is set and all interrupts are masked. Value of Interrupt Source Register is returned Write: no effect	ne	value	0

3.3.2.12 Leave Interrupt Service Routine Register

Address: 0x0028 Width [bit]: 32

Bit	Name	Description	Write	Read	Reset (SW)
	Leave Interrupt Ser	vice Routine Register			
31:0	Leave ISR Reg	Read: isr_status is reset and the overall masking of interrupts is released. Value of Interrupt Source Register is returned Write: no effect	ne	value	0

3.3.2.13 Interrupt Control Register

Address: 0x002c Width [bit]: 32

Bit	Name	Description	Write	Read	Reset (SW)
	Interrupt Contro	ol Register			
31:4	reserved		ne	0	0
3	isr_mask	isr_mask flag value	ne	value	0
2	isr_status	isr_status flag value 1: "ISR mode" 0: "normal mode"	ne	value	0
1	Leave ISR	written to with 1: isr_status is reset and the overall masking of interrupts is released.	exec	0	0
0	Enter ISR	written to with 1: isr_status is set and all interrupts are masked.	exec	0	0

3.3.2.14 SPI Flash Memory Control Register

Address: 0x0060 Width [bit]: 32

Bit	Name	Description	Write	Read	Reset (HW)
SPI Flash	n Memory Control Re	egister			
31	Loader Start	Start to load SPI configuration from loader start address, software can reload again using this bit. Start to load SPI configuration from the current address stored in the SPI Flash Memory Address Register. During the loading time software accesses to registers are hold until loading has been finished.	yes	0	0
30	SPI Busy	Status bit indicating that a command is in progress on the SPI	no	yes	0

Bit	Name	Description	Write	Read	Reset (HW)
29	SPI VPD enable	(default) VPD provided in TWSI EE-PROM VPD is mapped to SPI Flash Memory. Enables VPD accesses to the SPI Flash Memory.	yes	yes	0
28	RD ID Protocol	 SPI Flash Memories of different vendors need different protocols for reading the ID: 0: The ID is transferred immediately by the SPI Flash Memory after Read ID instruction is initiated (ATMEL Flash Memory). 1: Dummy Address write (3 zero bytes) should precede the initial Read ID instruction. (SST and ST SPI Flash Memories) 	yes	aw	0
27:20	Reserved		yes	0	0
19	Start SPI	An SPI Instruction is initiated by writing a '1' to this register bit.	exec	0	0
18:16	Instruction	Selection of one of the opcodes of the SPI Flash Memory opcode registers: 0: Opcode No Operation 1: Opcode Read 2: Opcode Read ID 3: Opcode Read Status Register 4: Opcode Write Enable 5: Opcode Write 6: Opcode Sector Erase 7: Opcode Chip Erase	yes	yes	0
15:8	Reserved		yes	0	0
7:0	SPI device Status	Contents of the status register from the SPI device. Register is updated only after executing the Read Status Register command by the SPI Flash Memory. During write access or erasing of SPI Flash Memory, software should continue initiate Read Status Register instruction and afterwards reading this register until the last bit- bit[0] is 0 before start of next write or read access.	no	yes	0x00

3.3.2.15 SPI Flash Memory Address Register

Address: 0x0064 Width [bit]: 32

Bit	Name	Description	Write	Read	Reset (HW)
SPI Flash Memory Address Register					
31:20	Reserved		yes	0	0
19:0	SPI Flash Mem- ory address	SPI Flash Memory Address for read or write accesses to the SPI Flash Memory	yes	yes	0x0000 0

3.3.2.16 SPI Flash Memory Data Register

Address: 0x0068 Width [bit]: 32

Bit	Name	Description	Write	Read	Reset (HW)
SPI Flash	SPI Flash Memory Data Register				
31:0	SPI Flash Mem- ory data	SPI Flash Memory data for write access- es or result of read access to the SPI Flash Memory	yes	yes	0x0000 0

3.3.2.17 SPI Flash Memory Vendor/Device ID Register

Address: 0x006c Width [bit]: 32

Bit	Name	Description	Write	Read	Reset (HW)
SPI Flash	SPI Flash Memory Vendor/Device ID Register				
31:16	Reserved		yes	0	0

Bit	Name	Description	Write	Read	Reset (HW)
15:8	Vendor-ID	To identify the Vendor of the Flash each device has a special code which can be read out with the RDID instruction	no	yes	0x00
7:0	Device-ID	To identify the Flash Device each device has a special code which can be read out with the RDID instruction	no	yes	0x00

3.3.2.18 SPI Flash Memory Loader Configuration Register

Address: 0x0070 Width [bit]: 32

Bit	Name	Description	Write	Read	Reset (HW)
SPI Flasi	n Memory Loader Co	nfiguration Register			
31:28	Reserved		yes	0	0
27:16	Normal Loader start address	Start Address of Configuration data within SPI Flash Memory After reset SPI Flash Memory loader starts to load configuration data from this address. Address is aligned to 256 Byte boundaries. These bits are the higher bits of the address and bits 7:0 are set to '0' implicitly.	yes	yes	0x1f8
15:12	Reserved		yes	0	0
11:0	PIG Loader start address	Start Address of Configuration data within SPI Flash Memory when in Plug-in-Go mode During power save mode SPI Flash Memory loader will start to load configuration data from this address Address is aligned to 256 Byte boundaries. These bits are the higher bits of the address and bits 7:0 are set to '0' implicitly.	yes	yes	0x1f0

April 20, 2004, Advanced Document Classificat

3.3.2.19 SPI Flash Memory VPD Configuration Register

Address: 0x0074 Width [bit]: 32

Bit	Name	Description	Write	Read	Reset (HW)
SPI Flas	h Memory VPD Confi	guration Register			
31:28	Reserved		yes	0	0
27:16	VPD end address	When VPD is mapped into SPI Flash Memory, VPD area ends at this address. Accesses beyond this end address are invalid accesses. Address is aligned to 256 Byte boundaries. These bits are the higher bits of the address and bits 7:0 are set to '0' implicitely.	yes	yes	0x1c1
15:12	Reserved		yes	0	0
11:0	VPD start address	When VPD is mapped into SPI Flash Memory, VPD area starts at this address. Accesses below this start address are invalid accesses. Address is aligned to 256 Byte boundaries. These bits are the higher bits of the address and bits 7:0 are set to '0' implicitely.	yes	yes	0x1c0

3.3.2.20 SPI Flash Memory Opcode 1 and 2 Register

Address: 0x0078, 0x007c Width [bit]: 2 x 32

The listed default values for the opcodes are valid for SST's serial flash memories.

The values must be adapted by software when using SPI flash memories of other providers. Especially the opcodes of Sector Erase, Chip Erase and Read ID must be changed. All other opcodes are equal for the SPI Flash Memories supported by Yukon™ EC.

Bit	Name	Description	Write	Read	Reset (HW)
SPI Flash	SPI Flash Memory Opcode 1 Register				

Bit	Name	Description	Write	Read	Reset (HW)
31:24	Opcode Read Status	Opcode for reading the status register of SPI Flash Memory. Result is stored within lower bits of SPI Flash Memory Control Register.	yes	aw	0
23:16	Opcode Read ID	Opcode for reading the Vendor/ Device ID out of SPI Flash Memory. Result is stored within SPI Flash Memory Vendor/ Device ID Register.	yes	aw	0
15:8	Opcode Read	Opcode for Read data out of SPI Flash Memory at address of SPI Flash Memory Address Register. Result is stored within SPI Flash Memory data register.	yes	aw	0
7:0	Opcode No Operation	Opcode for No Operation	yes	aw	0
SPI Flash	n Memory Opcode 2 I	Register			
31:24	Opcode Chip Erase	Opcode for SPI Flash Memory chiperase command. During execution of this operation software should check SPI device status bit[0], SPI has not finished erasing until status bit[0] is 0.	yes	aw	0
23:16	Opcode Sector Erase	Opcode for a SPI Flash Memory sector- erase command. During execution of this operation software should check SPI de- vice status bit[0], SPI has not finished erasing until status bit[0] is 0.	yes	aw	0
15:8	Opcode Write	Opcode for Writing data of SPI Flash Memory data register into SPI Flash Memory at address of SPI Flash Memory Address Register.	yes	aw	0
7:0	Opcode Write Enable	Opcode for the WREN command which sets the write enable latch. After execution of this command a Sector Erase, Chip Erase or Program command should follow.	yes	0	0

3.3.2.21 Block Window

Address: 0x0080.. 0x00fc Width [bit]: 128 x 32

One block of the Control Register File is mapped into this address space according to the setting of **Register Address Port**.

When the contents of the Register Address Port is one (RAP = 1) this block window is mapped to itself. All read values are ZERO and write cycles have no effect.

3.3.2.22 MAC-Address Registers Link and maintenance

Address: 0x0100 Width [bit]: 6 x 8 (Link)

Address: 0x0110 Width [bit]: 6 x 8 (maintenance)

These registers hold the MAC Address.

MAC Addr_x: x maybe 1 or 3 for the two implemented link (1) and maintenance (3).

They are loaded at POWER ON RESET from the SPI Flash Memory or TWSI EEPROM.

They may be written in testmode.

Bit	Name	Description	Write	Read	Reset (HW)
MAC-Ad	MAC-Address Registers				
31:16	Reserved				
15:8	MAC Addr_x<5>	Mac-Address, Byte 5	ne	value	0
7:0	MAC Addr_x<4>	Mac-Address, Byte 4	ne	value	0
31:24	MAC Addr_x<3>	Mac-Address, Byte 3	ne	value	0
23:16	MAC Addr_x<2>	Mac-Address, Byte 2	ne	value	0
15:8	MAC Addr_x<1>	Mac-Address, Byte 1	ne	value	0
7:0	MAC Addr_x<0>	Mac-Address, Byte 0	ne	value	0

3.3.2.23 Interface Type Register (PMD Type and Connector Type)

Address: 0x0118 Width [bit]: 16

This register holds the type of interface.

It is loaded at POWER ON RESET from the SPI Flash Memory or the TWSI EEPROM.

It may be written in testmode.

Bit	Name	Description	Write	Read	Reset (HW)
Interface Type Register					
15:8	PMD	PMD Type	ne	value	0
7:0	Connector	Connector Type	ne	value	0

3.3.2.24 Chip Revision Register

Address: 0x011a Width [bit]: 8

This register holds chip revision number.

The Chip Revision is fixed to the current chip revision number.

Bit	Name	Description	Write	Read	Reset (HW)
Chip Rev	Chip Revision Register				
7:4	Chip Revision	Initial Revision is 0x0 Fixed Value (incremented with chip revision)	ne	00	revision
3:0	Reserved		ne	value	value

CONFIDENTIALDocument Classification: Proprietary Information

3.3.2.25 Chip ID Register

Address: 0x011b Width [bit]: 8

This register holds the chip identification code.

Bit	Name	Description	Write	Read	Reset (HW)
Chip ID F	Chip ID Register				
7:0	Chip ID	Initial ID is 0xb6 Fixed Value	ne	0xb6	

3.3.2.26 SPI Flash Memory Registers

Address: 0x011c Width [bit]: 4 x 8

These registers hold optional information.

They are loaded at POWER ON RESET from the SPI Flash Memory.

They are loaded at POWER ON RESET from the SPI Flash Memory.

They may be written in testmode (besides RAM Size field and bond status bits).

Bit	Name	Description	Write	Read	Reset (HW)
EPROM	EPROM Registers				
31:24	Eprom<3>	EPROM, Byte 3	ne	value	0
Eprom<2	2> HW Resources				
23:17	Reserved		ne	value	0
16	Link available	O: Link not available (not implemented in device) 1: Link available	ne	value	0
Eprom<1	l> Clock Gating				
15:12	Reserved		ne	value	value
11	bond_status Link	Status of input signal (pin strapping): 0: Link active 1: Link inactive	ne	value	value
10	Disable PHY/MAC Link	Clock gating for ref_clk/mac_clk for Link 0: clock enabled for Link 1: clock disabled	ne	value	0
9	Disable core_clk Link	Clock gating for core_clk for Link 0: clock enabled for Link 1: clock disabled	ne	value	0
8	Disable pci_clk Link	Clock gating for pci_clk for Link 0: clock enabled for Link 1: clock disabled	ne	value	0
Eprom<0	Eprom<0> RAM Size				
7:0	Eprom<0> RAM size	EPROM, Byte 0 RAM size specification: 0x0c: 12 x 4 KB = 48 KB (fixed value)	ne	0x0c	

3.3.2.27 Clock Divider Register

Address: 0x0120 Width [bit]: 32

Bit	Name	Description	Write	Read	Reset (SW)
	Clock Division value		yes	aw	0
31:24					
23:16	Clock Div Value	Selection of divisor for clock division of core clock:	yes	value	3
		0: divide clock by 2			
		1: divide clock by 4			
		:			
		n: divide clock by (n+1)*2			
		:			
		255: divide clock by 512			
		Minimum core clock frequency is 0.241 MHz (125 MHz/512)			
	Clock Division Co				
15:2	Reserved				
1	Clock Div Enable	Enable/Disable Clock division of core clock for power saving purposes Default: disabled 0b01	exec	0b10	0
0	Clock Div Disable			0b01	1

3.3.2.28 IRQ Timer Registers

Address: 0x0130 Width [bit]: 3 x 32

Usage of the Timer is described in chapter 3.23 Timer on page 278.

Bit	Name	Description	Write	Read	Reset (SW)
31:0	Timer Init Value		yes	aw	0
31:0	Timer		yes (for tests only)	value	0

Bit	Name	Description	Write	Read	Reset (SW)
	Timer Control/Test				
31:16	Reserved				
		Test			
15:11	Reserved				
10	Timer Test On	Testmode ON/OFF	exec	0b10	0
9	Timer Test Off			0b01	1
8	Timer Step	Timer decrement	exec	0	
		Control			
7:3	Reserved				
2	Timer Start	Start/Stop Timer	exec	0b10	0
1	Timer Stop			0b01	1
0	Timer Clear IRQ	Clear Timer Interrupt	exec	0	

The timer implements write posting and retries the following accesses to the timer while a posted write is in progress.

Target reads are retried until the addressed register is synchronized to PCI Clock.

3.3.2.29 IRQ Moderation Timer Registers

Address: 0x0140 Width [bit]: 3 x 32

Usage of the IRQ Moderation Timer is described in chapter 3.13 Interrupts on page 223.

Bit	Name	Description	Write	Read	Reset (SW)
31:0	IRQ Moderation Tir	ner Init Value	yes	aw	0
31:0	IRQ Moderation Tir	ner	yes	value	0
	IRQ Moderation Tir	IRQ Moderation Timer Control/Test			
31:16	Reserved				
		Test			
15:11	Reserved				
10	IM Timer Test On	Testmode ON/OFF	exec	0b10	0
9	IM Timer Test Off			0b01	1

Bit	Name	Description	Write	Read	Reset (SW)
8	IM Timer Step	Timer decrement	exec	0	
		Control			
7:3	Reserved				
2	IM Timer Start	Start/Stop IM Timer	exec	0b10	0
1	IM Timer Stop			0b01	1
0	Reserved				

The IRQ Moderation Timer implements write posting and retries the following accesses to the IRQ Moderation Timer while a posted write is in progress.

Target reads are retried until the addressed register is synchronized to PCI Clock.

3.3.2.30 Interrupt Moderation Mask Register

Address: 0x014c Width [bit]: 32

Each bit position defines, if the dedicated interrupt is moderated or propagated directly to the Interrupt Line INTA#.

The enable bits have the same bit positions as in the **Interrupt Source Register.** Unused bits are treated like reserved.

If set to ONE, interrupt is moderated.

If set to ZERO, interrupt is propagated directly to the Interrupt Line INTA#.

Bit	Name	Description	Write	Read	Reset (SW)
	Interrupt Moderatio	Interrupt Moderation Mask Register			
31:0	En Mod IRQ xxx	Enable Moderation Interrupt xxx	yes	aw	0

The interrupts of the MAC Interrupt Source Register cannot be moderated separately.

3.3.2.31 Interrupt Hardware Error Moderation Mask Register

Address: 0x0150 Width [bit]: 32

Each bit position defines, if the dedicated interrupt is moderated or propagated directly to the Interrupt Line INTA#.

The enable bits have the same bit positions as in the **Interrupt HW Error Source Register.** Unused bits are treated like reserved.

If set to ONE, interrupt is moderated.

If set to ZERO, interrupt is propagated directly to the Interrupt Line INTA#.

Bit	Name	Description	Write	Read	Reset (SW)
	Interrupt Hardware	Error Moderation Mask Register			
31:0	En Mod IRQ xxx	Enable Moderation Hardware Interrupt xxx	yes	aw	0

3.3.2.32 General Purpose IO Register

Address: 0x015c Width [bit]: 32

For further extension the General Purpose IO Pins are routed to the General Purpose Registers. These IOs are programmable as inputs or outputs

Bit	Name	Description	Write	Read	Reset value
31	Clock Debug Enable	0 = Disable clock debug 1 = Enable clock debug Selected clock will be muxed out to VPD_CLK pin.	yes	aw	0
30	Reserved				
29:26	CLK Debug	0000 = PCI_CLK 0001 = CLK_PCI 0010 = CLK25 0111 = SPI_CLK 1001 = CLK_CORE 1010 = SMCLK_IN 1100 = PIPE_CLK	yes	aw	0
25:16	GPIO Dir<9:0>	Defines the type of the General Purpose IO Pins. 1 = output 0 = input In this application only GPIO<3:0>are available as external pins	yes	aw	0

Bit	Name	Description	Write	Read	Reset value
15:11	Reserved				
10	Random Number	Random Number Serializer Enable			
9	Reserved	Reserved			
8:0	GPIO<8:0>	These bits are routed to the ASIC's pins for future external options. As output they are synchronous to PCI Clock, as input they are synchronized to PCI Clock. In this application only GPIO<3:0>are available as external pins	yes	aw	0

3.3.2.33 TWSI (HW) Registers

Address: 0x0160 Width [bit]: 3 x 32

Bit	Name	Description	Write	Read	Reset value
	TWSI (HW) Contro	Register (Address: 0x0160, width 32)			
31	Flag	Starts the TWSI data transfers, determines its direction and signals its completion by being toggled by HW. If written 1, a TWSI write is started. Set to 0 after completion. If written 0, a TWSI read is started. Set to 1 after completion. Generates an interrupt on completion.	exec	value	0
30:16	TWSI Address	Address of the TWSI device register to be written/read.	yes	aw	0x00
15:9	TWSI Devsel	Devsel Byte of the TWSI device to be written/read.	yes	aw	0x00
8:5	Reserved				
4	TWSI Burst	0 = single Byte transfers 1 = 4 Byte Page Mode write transfers with fixed page size of 8 Bytes assumed	yes	aw	0

Bit	Name	Description	Write	Read	Reset value
3:1	TWSI Device Size	Defines the size of the addressed TWSI Device in Bytes. 0: 256 Bytes and smaller 1: 512 Bytes 2: 1024 Bytes 3: 2048 Bytes 4: 4096 Bytes 5: 8192 Bytes 6: 16384 Bytes 7: 32768 Bytes Default value is 256 Bytes.	yes	aw	0x00
0	TWSI Stop	A written 1 interrupts the current TWSI transfer at the next byte boundary with a stop condition and signals end of TWSI transfer by toggling Flag .	exec	0	0
	TWSI (HW) Data R	egister (Address: 0x0164, width 32)			
31:0	TWSI Data	Must be written before TWSI Address Register for TWSI write. Contains TWSI read Data after completion of TWSI read.	yes	aw	0x00
	TWSI (HW) IRQ Re	vice in Bytes. 0: 256 Bytes and smaller 1: 512 Bytes 2: 1024 Bytes 3: 2048 Bytes 4: 4096 Bytes 5: 8192 Bytes 6: 16384 Bytes 7: 32768 Bytes Default value is 256 Bytes. A written 1 interrupts the current TWSI transfer at the next byte boundary with a stop condition and signals end of TWSI transfer by toggling Flag. Data Register (Address: 0x0164, width 32) Must be written before TWSI Address Re ister for TWSI write. Contains TWSI read Data after completion of TWSI read. IRQ Register (Address: 0x0168, width 32)			
31:1	Reserved				
0	Clear IRQ TWSI	Clears Interrupt Request from TWSI HW interface	exec	aw	0

These registers implement a serial TWSI interface to the optional temperature/voltage sensor. HW runs the 100 kHz serial TWSI protocol to obtain data.

The HW controlled TWSI interface and the SW controlled TWSI interface are connected to the same TWSI bus (Pins TWSI_DATA and TWSI_Clock). They **MUST NOT** be used in parallel.

If the HW controlled TWSI interface is used, the **TWSI (SW) Register** has to be set to inactive values (Reset values).

If the SW controlled TWSI interface is used, the HW controlled TWSI interface MUST NOT be started (FLAG/TWSI (HW) Register).

The TWSI clock and data port pins are pulled high by a pull up resistor to VCC of the TWSI device.

3.3.2.34 TWSI (SW) Register

Address: 0x016c Width [bit]: 32

Bit	Name	Description	Write	Read	Reset (SW)
TWSI (S	W) Register				
31:3	Reserved				
2	TWSI Data Dir	Defines direction of TWSI Data Port: 0 = Input 1 = Output	yes	aw	0
1	TWSI Data	TWSI Interface Data Port	yes	dir=0: value dir=1: aw	0
0	TWSI Clock	TWSI Interface Clock	yes	aw	1

This register implements a serial TWSI interface to the optional temperature/voltage sensor. SW has to run the serial TWSI protocol to obtain data.

As output, the **Data Port** must simulate an open collector output in order to obtain a 0.7 Vcc signal level at the TWSI device (if supplied with 5 V).

Driving to low level: **TWSI Data** = 0

TWSI Data Dir = 1

Floating to high level:**TWSI Data** = x

TWSI Data Dir = 0

The HW controlled TWSI interface and the SW controlled TWSI interface are connected to the same TWSI bus (Pins TWSI_DATA and TWSI_Clock). They **MUST NOT** be used in parallel.

If the HW controlled TWSI interface is used, the **TWSI (SW) Register** has to be set to inactive values (Reset values).

If the SW controlled TWSI interface is used, the HW controlled TWSI interface MUST NOT be started (FLAG/TWSI (HW) Register).

The TWSI clock and data port pins are pulled high by a pull up resistor to VCC of the TWSI device.

3.3.2.35 PEX PHY Address/Data Registers

Address: 0x0170 Width [bit]: 32

The PHYs of the PCI Express part are made accessible via the following registers.

Bit	Name	Description	Write	Read	Reset (SW)
PEX PHY	Address Register				
31	PEX PHY Access Mode	O: Write access to PEX PHY register 1: Read PEX PHY register and store data into data region bits 15:0 of this register.	yes	aw	0
30	PEX PHY regfile	PHY's register file of PEX module PEX debug register file	yes	aw	0
29:16	PEX PHY Address	14 bit PHY/debug Address for PCI Express module	yes	aw	0
PEX PHY	PEX PHY Data Register				
15:0	PEX PHY Data	16 bit PHY Data for PCI Express Module	yes	aw	0

3.3.2.36 RAM Random Registers

Address: 0x0180 - 0x0188 Width [bit]: 3 x 32

Bit	Name	Description	Write	Read	Reset (SW)
RAM Add	RAM Address (offset: 0x00, width: 32)				
31:19	Reserved				
18:0	RAM Address	Defines RAM address in qwords.	yes	aw	0
Data Por	t/lower dword (offset:	0x04, width: 32)			
31:0	Data Port/lower dword	Dataport/lower dword for exchange of read/write data. On a PCI read access, reading from RAM to the data ports is initiated. The initiating PCI access and subsequent accesses are retried on PCI while reading from RAM	yes	value exec	0

Bit	Name	Description	Write	Read	Reset (SW)
Data Por	Data Port/upper dword (offset: 0x08, width: 32)				
31:0	Data Port/upper dword	Dataport/upper dword for exchange of read/write data. On a PCI write access, writing to RAM from the data ports is initiated. Subsequent PCI accesses are retried on PCI while writing to RAM	yes exec	value	0

3.3.2.37 RAM Interface Registers

Address: 0x0190 - 0x01a0 Width [bit]: 5 x 32

The Timeout values limit the burst length of data transfers for each requestor individually.

Default values must be used.

Bit	Name	Description	Write	Read	Reset (pri- vate)
	Timeout Init Value	es 0 - 3 (offset: 0x00, width: 32)			
31:24	Timeout Init Value 3	Read SM Rx1	yes	aw	32
23:16	Reserved	Write SM Txs1	yes	aw	32
15:8	Timeout Init Value 1	Write SM Txa	yes	aw	32
7:0	Timeout Init Value 0	Write SM Rx	yes	aw	32
	Timeout Init Value	es 4 and 5 (offset: 0x04, width: 32)			
31:16	Reserved (leg- acy)				
15:8	Reserved		yes	aw	32
7:0	Timeout Init Value 4	Read SM Txa	yes	aw	32
31:0	Reserved				

Bit	Name	Description	Write	Read	Reset (pri- vate)
	Timeout Timer (offs	eet: 0x0c, width: 32)			
31:8	Reserved				
7:0	Timeout Timer		yes (for tests only)	value	0
	RAM Interface Con	trol/Test (offset: 0x10, width: 32)			
		Test			
31:20	Reserved				
19	Timeout	1: if Timeout Timer = 0	ne	value	1
18	Timeout Timer Test On	Testmode ON/OFF	exec	0b10	0
17	Timeout Timer Test Off			0b01	1
16	Timeout Timer Step	Timer decrement	exec	0	
		Control			
15:10	Reserved				
9	Clear IRQ PAR Rd RAM	Clear Parity Error on read Interrupt	exec	0	
8	Clear IRQ PAR Wr RAM	Clear Parity Error on write Interrupt	exec	0	
7:2	Reserved				
1	Reset Clear	Set/Clear Reset.	exec	0b10	0
0	Reset Set	Executed, if appropriate bit is set to 1. If Reset is set, all RAM Interface functions and registers are in their reset state. Reset is forwarded to the RAM Random Access Device in order to avoid a hangup on a target access while the RAM Interface is reset.		0b01	1 (SW)

3.3.2.38 Transmit Arbiter Registers

Address: 0x0200 - 0x0210 Width [bit]: 5 x 32

Bit	Name	Description	Write	Read	Reset (SW)
	Interval Timer Init	/alue (offset: 0x00, width: 32)			
31:0	Interval Timer Init Value	Number of core clock cycles as time interval for rate control. T _{Max} = 27.53 s	yes	aw	0
	Interval Timer (offs	et: 0x04, width: 32)			
31:0	Interval Timer	Interval Timer value: number of core clock cycles (125 MHz) T _{Max} = 27.53 s	yes	aw	0
	Limit Counter Init \	/alue (offset: 0x08, width: 32)			
31:24	Reserved				
23:0	Reserved		yes	aw	0
	Limit Counter (offse	et: 0x0c, width: 32)			
31:0	Limit Counter		yes	aw	0
	Timer/Counter Con	htrol/Status/Test (offset: 0x10, width: 32)			
		Status			
31:17	Reserved				
16	Priority/Sync. Rambuffer	Set as long Limit Counter not ZERO or if Force Sync On is set	ne	value	0
		Test			
15:14	Reserved				
13	Interval Timer Test On	Testmode ON/OFF	exec	0b10	0
12	Interval Timer Test Off			0b01	1
11	Interval Timer Step	Timer decrement	exec	0	

Bit	Name	Description	Write	Read	Reset (SW)
10	Limit Counter Test On	Testmode ON/OFF	exec	0b10	0
9	Limit Counter Test Off			0b01	1
8	Limit Counter Step	Counter decrement	exec	0	
		Control			
6	Force Sync Off			0b01	1
4	Dis Alloc			0b01	1
2	Rate Ctrl Stop			0b01	1
1	Arbiter Opera- tional On	Operational mode ON/OFF	exec	0b10	0
0	Arbiter Opera- tional Off	If OFF, no request is granted. Has to be set to OFF until all other devices are initialized		0b01	1

3.3.2.39 RSS Key Registers

Address: 0x0220 - 0x022c Width [bit]: 4 x 32 Address: 0x02a0 - 0x02ac Width [bit]: 4 x 32

RSS is described in "Receive-Side Scaling Hash Design Specification" by Microsoft Corporation.

Bit	Name	Description	Write	Read	Reset (SW)
RSS Key	RSS Key 0 (offset: 0x00, width: 32)				
31:0	RSS Key 0	Part 0 (LSB) of random key for RSS Hash Algorithm	yes	aw	0
RSS Key	1 (offset: 0x04, width:	32)			
31:0	RSS Key 1	Part 1 of random key for RSS Hash Algorithm	yes	aw	0

Bit	Name	Description	Write	Read	Reset (SW)
RSS Key	2 (offset: 0x08, width:				
31:0	RSS Key 2	Part 2 of random key for RSS Hash Algorithm	yes	aw	0
RSS Key	RSS Key 3 (offset: 0x0c, width: 32)				
31:0	RSS Key 3	Part 3 (MSB) of random key for RSS Hash Algorithm	yes	aw	0

3.3.2.40 PCI Configuration Registers

0x0380 - 0x03fc Width [bit]: Address: 32 x 32

The Configuration Register File is mapped additionally into the Control Register File.

At this place the lower 128 bytes of the Configuration Register Files are mapped. The whole Configuration Register File is mapped to blocks 56 up to 60.

It is read only with some exceptions: Our Register 1 and 2 and VPD Address and VPD Data Register may be written.

Write operations are completed normally on the bus and the data is discarded.

For testing purposes, the Configuration Register File may be set writable by En Config Write.

3.3.2.41 BMU Registers for Receive Queues

Address: 0x0400 - 0x044c Width [bit]: 20 x 32 (receive queue, structure as shown below)

These registers are intended to be used for testing and diagnostic purposes, except the Control/Status Registers and Watermark for initialization.

Manipulating the content of these registers under 'normal' running conditions is not recommended and may lead to undefined results.

If the default values are acceptable, the Watermark should not be written (for future backward compatibility, if watermarks/FIFO depth are adapted).

For each receive queue in each link a separate set of registers is implemented.

Page 158

Bit	Name	Description	Write	Read	Reset (SW)
Receive	Queue Registers				
	Current Receive De	escriptor (offset: 0x00, width: 2 x 16)			
31:16	Receive Buffer Control	Highest 16 bit of current List Element (when of type buffer) Own bit, Opcode, Control bits	ТО	value	0
15:0	Receive Buffer Byte Count		ТО	value	0
	RSS Hash Checksu	um (offset: 0x04, width: 32)			
31:0	RSS Hash Check- sum	Result of RSS Hash calculation, when enabled.			
	Receive Buffer Add	Iress (offset: 0x08, width: 2 x 32)			
31:0	Receive Buffer Address Lo	Lower part of receive buffer address	ТО	value	0
31:0	Receive Buffer Address Hi	Higher part of receive buffer address	ТО	value	0
	Receive Buffer Stat	cus Word (offset: 0x10, width: 32)			
31:0	RFSW	Receive Frame Status Word as defined by GMAC (including length). Valid, if Own is cleared by the BMU and EOF is set. If not valid, the BMU writes back, what received at that place.	ТО	value	0
	Receive Timestamp	o (offset: 0x14, width: 32)			
31:0	Timestamp	Receive Timestamp as defined by the Timestamp Timer at writing the Receive Status Word to the Receive MAC FIFO. Valid, if Own is cleared by the BMU and EOF is set. If not valid, the BMU writes back, what received at that place.	то	value	0

Bit	Name	Description	Write	Read	Reset (SW)
	TCP/IP Checksum I	Extension (offset: 0x18, width: 4 x 16)			
	two checksums enable TCP/IP checksums 1 Start 1 & 2 up to the The checksums are The byte order within	written to TCP Sum 1 & 2. In the TCP sum is big endian: wer byte (bit 7:0) and the LSB is in the			
	ed to the checksum. If the calculation doe packet, the missing be	ese values are updated only, if STF is set			
31:16	Checksum 2	Checksum 2 Valid, if Own is cleared by the BMU and EOF is set. Defined by the PCI device, if EOF is set	ТО	value	0
15:0	Checksum 1	Checksum 1 Valid, if Own is cleared by the BMU and EOF is set. Defined by the PCI device, if EOF is set	ТО	value	0
31:16	Start position 2	Checksum 2, start position for calculation in bytes (16-bit aligned) counted from zero (first byte = 0) Defined by the host, if STF is set	то	value	0
15:0	Start position 1	Checksum 1, start position for calculation in bytes (16-bit aligned) counted from zero (first byte = 0) Defined by the host, if STF is set	то	value	0
	VLAN Tag (offset: 02	x20, width: 16)			
31:16	Reserved		то	value	0
15:0	VLAN Tag	received VLAN Tag bytes out of data stream The byte order within the VLAN Tag value is big endian: The MSB is in the lower byte (bit 7:0) and the LSB is in the higher byte (bit 15:8).			

Page 160

Bit	Name	Description	Write	Read	Reset (SW)
	Done Index (offset:	0x24, width: 16)			
31:12	Reserved				
11:0	Done Index	Incremented for each processed list element	ТО	value	0
	Request Address (offset: 0x28, width: 2 x 32)			
31:0	Request Addr Lo	Lower 32 bit of current request address	то	value	0
31:0	Request Addr Hi	Higher 32 bit of current request address	то	value	0
	Request Byte Coun	nt (offset: 0x30, width: 16)			
31:11	Reserved				
10:0	Request Byte Count	Length of current request in number of bytes	ТО	value	0
	BMU Control/Status	s Register (offset: 0x34, width: 32)			
31	BMU Idle	Status bit BMU in Idle state	ne	value	1
30	TCP Pkt	Flag: '1', if current packet is TCP/IP	то	value	0
		Only valid, when RSS Hash enabled			
29	IP Pkt	Flag: '1', if current packet is IP	то	value	0
		Only valid, when RSS Hash enabled			
28:16	Reserved				
15	RSS Hash Enable	Enables/disables RSS hash calculation	exec	0b10	0
14	RSS Hash Dis- able	for receive queue Default: Disabled (0b01)		0b01	1
13	RX Checksum Enable	Enables/disables TCP/IP checksum check	exec	0b10	0
12	RX Checksum Disable	Default: Disabled (0b01)		0b01	1
11	Clear IRQ Parity	Clear IRQ on Parity errors (RX BMU FIFO read data parity error)	exec	0	0
10	Clear IRQ Check	Clear IRQ Check. (This interrupt is asserted when receiving a wrong opcode within a list element)	exec	0	0

CONFIDENTIAL

Bit	Name	Description	Write	Read	Reset (SW)
9	Stop Rx BMU	10: Stop receive queue transfer after	exec	0b10	0
8	Start Rx BMU	next end of packet 01: normal operation (default)		0b01	1
7	FIFO Operational On	Default: OFF (0b01) Must be switched to ON after initialization	exec	0b10	0
6	FIFO Operational Off			0b01	1
5	FIFO Enable	Default: Reset (0b01)	exec	0b10	0
4	FIFO Reset			0b01	1
3	BMU Operational On	Default: OFF (0b01) Must be switched to ON after initialization	exec	0b10	0
2	BMU Operational Off	wast be emission to err unter minum bandin		0b01	1
1	BMU Enable	Default: Reset (0b01)	exec	0b10	0
0	BMU Reset			0b01	1
	BMU Test Register	(offset: 0x38, width: 32)			
31:23	Reserved				
22	Testmode Shad- ow Read Ptr On	Switch to testmode Shadow Read Pointer	exec	0b10	0
21	Testmode Shad- ow Read Ptr Off	Default: operation (testmode = off)		0b01	1
20	Teststep Shadow Read Ptr	Teststep: increment Shadow Read Pointer	exec	0	0
19	Reserved				
18	Testmode Read Ptr On	Switch to testmode Read Pointer Default: operation (testmode = off)	exec	0b10	0
17	Testmode Read Ptr Off			0b01	1
16	Teststep Read Ptr	Teststep: increment Read Pointer	exec	0	0

Bit	Name	Description	Write	Read	Reset (SW)
15	Reserved				
14	Testmode Shad- ow Write Ptr On	Switch to testmode Shadow Write Pointer	exec	0b10	0
13	Testmode Shad- ow Write Ptr Off	Default: operation (testmode = off)		0b01	1
12	Teststep Shadow Write Ptr	Teststep: increment Shadow Write Pointer	exec	0	0
11	Reserved				
10	Testmode Write Ptr On	Switch to testmode Write Pointer	exec	0b10	0
9	Testmode Write Ptr Off	Default: operation (testmode = off)		0b01	1
8	Teststep Write Ptr	Teststep: increment Write Pointer	exec	0	0
7	Reserved				
6	Testmode Req Nbytes/Addr On	Switch to testmode Request Nbytes/Addresses	exec	0b10	0
5	Testmode Req Nbytes/Addr Off	Default: operation (testmode = off)		0b01	1
4	Teststep Req Nbytes/Addr	Teststep Request Nbytes/Addresses An acknowledge from BIU is emulated and as a result address counter is incremented by Nbytes and Nbytes is reset to zero.	exec	0	0
3	Reserved				
2	Testmode Done Index On	Switch to testmode Done Index Default: operation (testmode = off)	exec	0b10	0
1	Testmode Done Index Off	Dolladii. oporation (tootinodo – on)		0b01	1
0	Teststep Done Index	Teststep: increment Done Index	exec	0	0
	BMU Statemachine	Register (offset: 0x3c, width: 32)			
31:0		State variables of all statemachines (writable only, when in operational mode, but then remains not the written value)	ТО	value	0x00 (idle state)

Bit	Name	Description	Write	Read	Reset (SW)
	FIFO Waterman	rk (offset: 0x40, width: 16)			
15:11	Reserved				
10:0		FIFO Watermark (bytes)	yes tbd: ITO?	aw	0x600
	FIFO Alignmen	ut (offset: 0x42, width: 8)			
15:7	Reserved				
6:4	MUX	Multiplexer setting	ne	value	0
3	Reserved				
2:0	VRAM	VRAM position	yes	value	0
	FIFO Read Sha	ndow Pointer (offset: 0x44, width: 16)			
15:11	Reserved				
10:0		FIFO Read Shadow Pointer (bytes)	ТО	value	0
	FIFO Read Sha	ndow Level (offset: 0x46, width: 8)			
15:8	Reserved				
7:0		FIFO Read Shadow Level (qword)	ne	value	0
	FIFO Read Poi				
15:8	Reserved				
7:0		FIFO Read Pointer (qword)	ТО	value	0
	FIFO read Leve	el (offset: 0x4a, width: 8)			
15:8	Reserved				
7:0		FIFO read Level (qword)	ne	value	0
	FIFO Write Poi	nter (offset: 0x4c, width: 8)			
7:0		FIFO Write Pointer (qword)	ТО	value	0
	FIFO Write Sha	ndow Pointer (offset: 0x4d, width: 8)			
7:0		FIFO Write Shadow Pointer (qword)	то	value	0
	FIFO Write Level (offset: 0x4e, width: 8)				
7:0		FIFO Write Level (qword)	ne	value	0

Bit	Name	Description	Write	Read	Reset (SW)
	FIFO Write Shadow	FIFO Write Shadow Level (offset: 0x4f, width: 8)			
7:0		FIFO Write Shadow Level (qword)	ne	value	0

3.3.2.42 BMU Registers for Transmit Queues

Address: 0x0680 - 0x06cc Width [bit]: 20 x 32 (asynchronous transmit queue)

These registers are intended to be used for testing and diagnostic purposes, except the **Control/Status Registers** and **Watermark** for initialization.

Manipulating the contents of these registers under 'normal' running conditions is not recommended and may lead to undefined results.

If the default values are acceptable, the **Watermark** should not be written (for future backward compatibility, if watermarks/FIFO depth are adapted).

The Watermark of the transmit queues MUST NOT BE SET to zero.

For each transmit queue in each link a separate set of registers is implemented.

The following register set is implemented for asynchronous transmit queue.

Bit	Name	Description	Write	Read	Reset (SW)				
Transmi	Transmit Queue Registers								
	Current Transmit D	escriptor (offset: 0x00, width: 2 x 16)							
31:16	Transmit Buffer Control		то	value	0				
15:0	Transmit Buffer Byte Count		то	value	0				
	Transmit Buffer Ad	dress (offset: 0x08, width: 2 x 32)							
31:0	Transmit Buffer Address Lo	Lower part of transmit buffer address	то	value	0				
31:0	Transmit Buffer Address Hi	Higher part of transmit buffer address	то	value	0				

Bit	Name	Description	Write	Read	Reset (SW)
	Transmit Buffer Sta	atus Word (offset: 0x10, width: 32)			
31:0	TFSW	Transmit Frame Status Word as defined by the MAC.	ТО	value	0
		Appended to transmit data of this buffer, if EOF is set.			
		This is a placeholder, because GMAC does not expect a Transmit Frame Status Word.			
		Default value is 0.			
		In loopback mode Transmit Frame Status Word has to be set to the expected Receive Frame Status Word of GMAC.			
		Defined by the host, if EOF is set			
	TCP/IP Checksum I	Extension (offset: 0x18, width: 4 x 16)			
31:16	Reserved				
15:0 31:16	TCP Sum Init	Checksum, start value Defined by the host, if STF is set. The byte order within the TCP sum init value is big endian: The MSB is in the lower byte (bit 7:0) and the LSB is in the higher byte (bit 15:8). During TCP Sum calculation the MSB is added to the first, third and so on byte of the packet. The LSB is added to the second, forth and so on byte of the packet. Checksum, start position for calculation	ТО	value	0
31.10	TOF Suill Start	in bytes (16-bit-aligned) counted from zero (first byte = 0) Defined by the host, if STF is set.	10	value	U
15:0	TCP Sum Write	Checksum, write position for checksum in bytes (16-bit-aligned) counted from zero (first byte = 0) Defined by the host, if STF is set.	ТО	value	0

Bit	Name	Description	Write	Read	Reset (SW)
	VLAN Tag (offset: 0	x20, width: 16)			
31:16	Reserved				
15:0	VLAN Tag	Transmit VLAN Tag bytes extracted from received descriptor of host buffer The byte order within the VLAN Tag value is big endian: The MSB is in the lower byte (bit 7:0) and the LSB is in the higher byte (bit 15:8).	ТО	value	0
	Done Index (offset:	0x24, width: 16)			
31:12	Reserved				
11:0	Done Index	Incremented for each processed list element	то	value	0
	Request Address (offset: 0x28, width: 2 x 32)			
31:0	Request Addr Lo	Lower 32 bit of current request address	ТО	value	0
31:0	Request Addr Hi	Higher 32 bit of current request address	ТО	value	0
	Request Byte Cour	nt (offset: 0x30, width: 16)			
31:11	Reserved				
10:0	Request Byte Count	Length of current request in number of bytes	ТО	value	0
	BMU Control/Statu	s Register (offset: 0x34, width: 32)			
31	BMU Idle	Status bit BMU in Idle state	ne	value	1
30:14	Reserved				
13	IP ID Increment Enable	Enables/disables incrementing of the IP identification field with every segment	exec	0b10	0
12	IP ID Increment Disable	during TCP segmentation. Default: disabled (0b01)		0b01	1
11	Clear IRQ TCP	Clear IRQ on TCP segmentation length mismatch	exec	0	0
10	Clear IRQ Check	Clear IRQ Check. (This interrupt is asserted when receiving a wrong opcode within a list element)	exec	0	0
9	Stop Tx BMU	10: Stop transmit queue transfer after	exec	0b10	0
8	Start Tx BMU	next end of packet 01: normal operation (default)		0b01	1

Bit	Name	Description	Write	Read	Reset (SW)
7	FIFO Operational On	Default: OFF (0b01) Must be switched to ON after initialization	exec	0b10	0
6	FIFO Operational Off			0b01	1
5	FIFO Enable	Default: Reset (0b01)	exec	0b10	0
4	FIFO Reset			0b01	1
3	BMU Operational On	Default: OFF (0b01) Must be switched to ON after initialization	exec	0b10	0
2	BMU Operational Off			0b01	1
1	BMU Enable	Default: Reset (0b01)	exec	0b10	0
0	BMU Reset			0b01	1
	BMU Test Register	(offset: 0x38, width: 32)			
31:23	Reserved				
22	Testmode Shad- ow Read Ptr On	Switch to testmode Shadow Read Pointer	exec	0b10	0
21	Testmode Shad- ow Read Ptr Off	Default: operation (testmode = off)		0b01	1
20	Teststep Shadow Read Ptr	Teststep: increment Shadow Read Pointer	exec	0	0
19	Reserved				
18	Testmode Read Ptr On	Switch to testmode Read Pointer Default: operation (testmode = off)	exec	0b10	0
17	Testmode Read Ptr Off			0b01	1
16	Teststep Read Ptr	Teststep: increment Read Pointer	exec	0	0
15	Reserved				
14	Testmode Shad- ow Write Ptr On	Switch to testmode Shadow Write Pointer	exec	0b10	0
13	Testmode Shad- ow Write Ptr Off	Default: operation (testmode = off)		0b01	1
12	Teststep Shadow Write Ptr	Teststep: increment Shadow Write Pointer	exec	0	0

Bit	Name	Description	Write	Read	Reset (SW)
11	Reserved				
10	Testmode Write Ptr On	Switch to testmode Write Pointer Default: operation (testmode = off)	exec	0b10	0
9	Testmode Write Ptr Off	Boladii: opolation (tootinodo – oii)		0b01	1
8	Teststep Write Ptr	Teststep: increment Write Pointer	exec	0	0
7	Reserved				
6	Testmode Req Nbytes/Addr On	Switch to testmode Request Nbytes/Addresses	exec	0b10	0
5	Testmode Req Nbytes/Addr Off	Default: operation (testmode = off)		0b01	1
4	Teststep Req Nbytes/Addr	Teststep Request Nbytes/Addresses An acknowledge from BIU is emulated and as a result address counter is incremented by Nbytes and Nbytes is reset to zero.	exec	0	0
3	Reserved				
2	Testmode Done Index On	Switch to testmode Done Index Default: operation (testmode = off)	exec	0b10	0
1	Testmode Done Index Off	Doladiii opolalion (loolinede – eli)		0b01	1
0	Teststep Done In- dex	Teststep: increment Done Index	exec	0	0
	BMU Statemachine	Register (offset: 0x3c, width: 32)			
31:0		state variables of all statemachines	ТО	value	0x00 (idle state)
	FIFO Watermark (of	fset: 0x40, width: 11)			
15:11	Reserved				
10:0		FIFO Watermark (bytes)	yes	aw	0x600
	FIFO Alignment (off	set: 0x42, width: 8)			
15:7	Reserved				
6:4	MUX	Multiplexer setting	ne	value	0

April 20, 2004, Advanced

Document Classification: Proprietary Information

Bit	Name	Description	Write	Read	Reset (SW)
3	Reserved				
2:0	VRAM	VRAM position	ne	value	0
	FIFO Write Shad	dow Pointer (offset: 0x44, width: 16)			
15:11	Reserved				
10:0		FIFO Write Shadow Pointer (bytes)	ТО	value	0
	FIFO Write Shad	dow Level (offset: 0x46, width: 8)			
15:8	Reserved				
7:0		FIFO write Level (qword)	ne	value	0
	FIFO Write Poin	ter (offset: 0x48, width: 8)			
15:8	Reserved				
7:0		FIFO Write Pointer (qword)	ТО	value	0
	FIFO Write Leve	el (offset: 0x4a, width: 8)			
15:8	Reserved				
7:0		FIFO write Level (qword)	ne	value	0
	FIFO Read Poin	ter (offset: 0x4c, width: 8)			
15:8	Reserved				
7:0		FIFO Read Pointer (qword)	ТО	value	0
	FIFO read Level	(offset: 0x4e, width: 8)			
15:8	Reserved				
7:0		FIFO read Level (qword)	ne	value	0

3.3.2.43 Prefetch Unit Registers

Address: Base Address Width [bit]:6 x 32 Address: Base Address + 0x20 Width [bit]:4 x 8

Each transmit or receive queue has its dedicated Prefetch FIFO and the Prefetch Unit Registers.

Base Addresses for the Prefetch Unit Register sets:

queue	Base Address
RX	0x0450
TX	0x06d0

The register address of each register is calculated by adding the base address and the offset.

Due to a smaller PFU FIFO for transmit queues, the size of the pointers and levels is to be decreased by one for transmit PFUs.

Bit	Name	Description	Write	Read	Reset (Link)
	Prefetch Control R	egister (Offset: 0x00, Width: 32)			
31:15	Reserved				
14	Master Request Loopback Test On	Testmode ON/OFF for the Master request, i.e. enables the stepping of the Master request by the SW.	exec	0b10	0
13	Master Request Loopback Test Off	The default operation is disabled.		0b01	1
12	Master Request Loopback Step	Enables the Loopback of a single master request.	exec	0	0
		For execution of this command, the Master Request Loopback Test MUST be set to ON.			
11	Reserved				
10	FIFO Read Pointer Test On	Testmode ON/OFF for the FIFO Read Pointer, i.e. enables the stepping of the	exec	0b10	0
9	FIFO Read Pointer Test Off	pointer by the SW. The default operation is disabled.		0b01	1

Bit	Name	Description	Write	Read	Reset (Link)
8	FIFO Read Pointer Step	FIFO Read Pointer increment. For execution of this command, the FIFO Read Pointer Test MUST be set to ON.	exec	0	0
7	Reserved				
6	FIFO Write Pointer Test On	Testmode ON/OFF for the FIFO Write Pointer, i.e. enables the stepping of the	exec	0b10	0
5	FIFO Write Pointer Test Off	pointer by the SW. The default operation is disabled.		0b01	1
4	FIFO Write Pointer Step	FIFO Write Pointer increment. For execution of this command, the FIFO Write Pointer Test MUST be set to ON.	exec	0	0
3	Operational On	Operational mode ON/OFF	exec	0b10	0
2	Operational Off	OFF resets all activities of the prefetch unit for initialization of the pointers and registers. The default operation is disabled.		0b01	1
1	PFU Reset Clear	Set/Clear PFU Reset.	exec	0b10	0
0	PFU Reset Set	Executed, if appropriate bit is set to 1. If PFU Reset is set, the integrated PFU and the PFU Target Interface are in their reset state.		0b01	1
List Last	Index (Offset: 0x04,	Width: 12)			
31:12	Reserved				
11:0	List Last Index	Specifies the index of the last entry in the list. The descriptor element length is defined by List Last Index + 1. The length is given as number of list elements Bit 6:0: fixed value 0x7f	yes	aw	0x07f
List Star	t Address Low (Offse	et: 0x08, Width: 32)			
31:12		Identifies the lower 32 bit of the start address of the descriptor list in the system memory.	yes	aw	0x0
11:0		The address is always aligned to 4 KB boundaries, i.e. the lower bits are always 0x0.	ne	0x0	0x0

Bit	Name	Description	Write	Read	Reset (Link)
List Star	t Address High (C	offset: 0x0c, Width: 32)			
31:0		Identifies the upper 32 bit of the start address of the descriptor list in the system memory.	yes	aw	0x0
Get Inde	x (Offset: 0x10, Wi	dth: 32)			
31:12	Reserved				
11:0		Specifies the Pop/Rd address within the descriptor list in system memory.	yes	value	0x0
		This Get Index points to the address of the next element to be fetched.			
		If Get Index and Put Index are equal, no element is in the FIFO			
		The index is given in list element granularity.			
Put Inde	x (Offset: 0x14, Wi	dth: 12)			
31:12	Reserved				
11:0		Specifies the Push/Wr address within the descriptor list in system memory. This Put Index points to the address of the next free element in the descriptor list (i.e. the position after the last valid element in the descriptor list). If Get Index and Put Index are equal, no element is in the FIFO. The index is given in list element granularity.	yes	aw	0x0
FIFO RA	M Write and Write	Shadow Pointer (Offset: 0x20, Width: 32)			
31:24	Reserved				
23:16	FIFO Wr Ptr	Specifies the Push/Wr pointer to the internal prefetch FIFO RAM. The pointer is given in bytes.	yes	value	0x0
EIEO DA	M Write Pointer	The pointer is given in bytes.			
15:5	Reserved				
4:0	FIFO Rd Ptr	Specifies the Push/Wr pointer to the internal prefetch FIFO RAM. The pointer is given in list element granularity (qwords).	yes	value	0x0

Bit	Name	Description	Write	Read	Reset (Link)
FIFO RA	M Read Pointer (Offs	et: 0x24, Width: 6)			
31:5	Reserved				
4:0	FIFO Rd Ptr	Specifies the Pop/Rd pointer to the internal prefetch FIFO RAM. The pointer is given in list element granularity.	yes	value	0x0
Master F	Request nbytes (Offse	et: 0x28, Width: 32)			
31:27	Reserved				
26:16	Master Request nBytes	Specifies the number of bytes requested from the master. This value is used only for debugging purpose. The number is given in Bytes	no	value	0x0
FIFO Wa	termark				
15:6	Reserved				
5:0	FIFO Watermark	Specifies the watermark level (i.e. free elements level) for prefetching new descriptor elements. The watermark is given in list element granularity.	yes	aw	0x0

Bit	Name	Description	Write	Read	Reset (Link)
FIFO Sh	adow level (Offset: 0)	(2C, Width: 32)			
31:24	Reserved				
23:16	FIFO Shadow level	Specifies the current filling level of the prefetch FIFO RAM. This value is directly updated by the read and write accesses to the FIFO RAM. This value is used for debugging purpose only. The number is given in bytes.	yes	value	ram size
FIFO lev	el				
15:5	Reserved				
4:0	FIFO level	Specifies the current filling level of the prefetch FIFO RAM. This value is directly updated by the read and write accesses to the FIFO RAM. This value is used for debugging purpose only. The number is given in list element granularity (qwords).	yes	value	ram size

3.3.2.44 Receive Rambuffer Registers

Address: 0x0800 - 0x0828 Width [bit]: 11 x 32 (receive queue, structure as shown below) Initialization or re-arrangement of a Rambuffer should ever start from reset state.

Bit	Name	Description	Write	Read	Reset (pri- vate)
	Receive Rambuffe	r Start Address (Offset: 0x00, width: 32)			
31:13	Reserved				
12:0	Start Address	Start Address in qwords of this queue in internal memory. Bit [7:0] are replaced by ZEROes internally, which means that the address is limited to multiples of 1 kB. Has to be defined after each Reset.	yes (for init/ tests only)	aw	0

Bit	Name	Description	Write	Read	Reset (pri- vate)
	Receive Rambuffer	End Address (Offset: 0x04, width: 32)			
31:13	Reserved				
12:0	End Address	End Address in qwords of this queue in internal memory. Bit [7:0] are replaced by ONEs internally, which means that the address is limited to multiples of 1 kB. Has to be defined after each Reset.	yes (for init/ tests only)	aw	0
	Receive Buffer Writ	Receive Buffer Write Pointer (Offset: 0x08, width: 32)			
31:13	Reserved				
12:0	Write Pointer	Write Pointer in qwords. Has to be set to Receive Rambuffer Start Address after each Reset.	yes (for init/ tests only)	value	0
	Receive Rambuffer				
31:13	Reserved				
12:0	Read Pointer	Read Pointer in qwords Has to be set to Receive Rambuffer Start Address after each Reset.	yes (for init/ tests only)	value	0
	Receive Rambuffer 0x10, width: 32)	Upper Threshold/Pause Packets (Offset:			
31:13	Reserved				
12:0	Upper Threshold/ Pause Packets	If this queue is filled up to this Threshold, signal XmtPausePkt of the MAC is asserted (if En Pause is set). Multiples of 8 bytes. No effect, if set to ZERO.	yes (for init/ tests only)	aw	0

Page 176

Bit	Name	Description	Write	Read	Reset (pri- vate)
	Receive Rambuffer set: 0x14, width: 32)	Lower Threshold/Pause Packets (Off-			
31:13	Reserved				
12:0	Lower Threshold/ Pause Packets	Signal XmtPausePkt of the MAC is deas- serted, if the number of bytes falls below Lower Threshold. Multiples of 8 bytes.	yes (for init/ tests only)	aw	0
	Receive Rambuffer 0x18, width: 32)	Upper Threshold/High Priority (Offset:			
31:13	Reserved				
12:0	Upper Threshold/ High Priority	If this queue is filled up to this Threshold, all arbiters grant highest priority to the requests of this queue. Multiples of 8 bytes. No effect, if set to ZERO.	ТО	aw	0
	Receive Rambuffer 0x1c, width: 32)	Lower Threshold/High Priority (Offset:			
31:13	Reserved				
12:0	Lower Threshold/ High Priority	All arbiters grant normal priority to the requests of this queue, if the number of bytes falls below Lower Threshold. Multiples of 8 bytes.	yes (for init/ tests only)	aw	0
	Receive Rambuffer	Packet Counter (Offset: 0x20, width: 32)			
31:13	Reserved				
12:0	Packet Counter	Packet Counter gives the current number of packets in this queue.	yes (for tests only)	value	0
	Receive Rambuffer	Level (Offset: 0x24, width: 32)			
31:13	Reserved				
12:0	Level	Level gives the current number of data in multiples of 8 bytes in this queue (including 16 bytes Statusword per packet).	ne	value	0

Bit	Name	Description	Write	Read	Reset (pri- vate)
	Receive Rambuffer	Control/Test (Offset: 0x28, width: 32)			
		Test			
31:20	Reserved				
19	Packet Counter Step Down	Packet Counter decrement	exec	0	
18	Packet Counter Test On	Testmode ON/OFF	exec	0b10	0
17	Packet Counter Test Off			0b01	1
16	Packet Counter Step Up	Packet Counter increment	exec	0	
15	Reserved				
14	Write Pointer Test On	Testmode ON/OFF	exec	0b10	0
13	Write Pointer Test Off	For Testmode ON this rambuffer queue MUST be set to NON Operational		0b01	1
12	Write Pointer Step	Write Pointer increment	exec	0	
11	Reserved				
10	Read Pointer Test On	Testmode ON/OFF	exec	0b10	0
9	Read Pointer Test Off	For Testmode ON this rambuffer queue MUST be set to NON Operational		0b01	1
8	Read Pointer Step	Read Pointer decrement	exec	0	
	Control/Status				
7:6	Reserved				
5	St&Fwd On	Store and Forward On/Off	exec	0b10	0
4	St&Fwd Off	If On, a frame is forwarded from Rambuffer only, if the complete frame is in Rambuffer.		0b01	1

Bit	Name	Description	Write	Read	Reset (pri- vate)
3	Operational On	Operational mode ON/OFF	exec	0b10	0
2	Operational Off	OFF resets all activities of this rambuffer queue for initialization of the pointers and registers		0b01	1
1	Reset Clear	Set/Clear Reset. Executed, if appropriate bit is set to 1.	exec	0b10	0 (SW)
0	Reset Set	If Reset is set, all Receive Rambuffer functions and registers are in their reset state.		0b01	1 (SW)

3.3.2.45 Transmit Rambuffer Registers

Address: 0x0a80 - 0x0aa8 Width [bit]: 7 x 32 (asynchronous transmit queue)

Initialization or re-arrangement of a Rambuffer should ever start from reset state.

Bit	Name	Description	Write	Read	Reset (pri- vate)
	Transmit Rambuff	er Start Address (Offset: 0x00, width: 32)			
31:13	Reserved				
12:0	Start Address	Start Address in qwords of this queue in internal memory. Bit [7:0] are replaced by ZEROes internally, which means that the address is limited to multiples of 1 kB. Has to be defined after each Reset.	yes (for init/ tests only)	aw	0
	Transmit Rambuff	er End Address (Offset: 0x04, width: 32)			
31:13	Reserved				
12:0	End Address	End Address in qwords of this queue in internal memory. Bit [7:0] are replaced by ONEs internally, which means that the address is limited to multiples of 1 kB. Has to be defined after each Reset.	yes (for init/ tests only)	aw	0
	Transmit Rambuff	er Write Pointer (Offset: 0x08, width: 32)			
31:13	Reserved				
12:0	Write Pointer	Write Pointer in qwords. Has to be set to Transmit Rambuffer Start Address after each Reset.	yes (for init/ tests only)	value	0
	Transmit Rambuff	er Read Pointer (Offset: 0x0c, width: 32)			
31:13	Reserved				
12:0	Read Pointer	Read Pointer in qwords. Has to be set to Transmit Rambuffer Start Address after each Reset.	yes (for init/ tests only)	value	0

Bit	Name	Description	Write	Read	Reset (pri- vate)
	Packet Counter (Of	fset: 0x20, width: 32)			
31:13	Reserved				
12:0	Packet Counter	Packet Counter provides the current number of packets in this queue.	yes (for tests only)	value	0
	Transmit Rambuffe	er Level (Offset: 0x24, width: 32)			
31:13	Reserved				
12:0	Level	Level gives the current number of data in multiples of 8 bytes in this queue (including 16 bytes Statusword per packet).	ne	value	0
	Rambuffer Control	Test (Offset: 0x28, width: 32)			
		Test			
31:20	Reserved				
19	Packet Counter Step Down	Packet Counter decrement	exec	0	
18	Packet Counter Test On	Testmode ON/OFF	exec	0b10	0
17	Packet Counter Test Off			0b01	1
16	Packet Counter Step Up	Packet Counter increment	exec	0	
15	Reserved				
14	Write Pointer Test On	Testmode ON/OFF	exec	0b10	0
13	Write Pointer Test Off	For Testmode ON this rambuffer queue MUST be set to NON Operational		0b01	1
12	Write Pointer Step	Write Pointer increment	exec	0	
11	Reserved				

CONFIDENTIAL

Bit	Name	Description	Write	Read	Reset (pri- vate)
10	Read Pointer Test On	Testmode ON/OFF	exec	0b10	0
9	Read Pointer Test Off	For Testmode ON this rambuffer queue MUST be set to NON Operational		0b01	1
8	Read Pointer Step	Read Pointer decrement	exec	0	
	Control/Status				
7	Reserved				
6	Reserved				
5	St&Fwd On	Store and Forward On/Off	exec	0b10	0
4	St&Fwd Off	If On, a frame is forwarded from Rambuffer only, if the complete frame is in Rambuffer. If On, this overrides the control on a per frame base as defined by the Transmit Descriptor. Because most PCI systems do not provide Gigabit Ethernet bandwidth, St&Fwd should be switched On for the Transmit Rambuffer(s).		0b01	1
3	Operational On	Operational mode ON/OFF	exec	0b10	0
2	Operational Off	OFF resets all activities of this Rambuffer queue for initialization of the pointers and registers		0b01	1
1	Reset Clear	Set/Clear Reset. Executed, if appropriate bit is set to 1.	exec	0b10	0 (SW)
0	Reset Set	If Reset is set, all Transmit Rambuffer functions and registers are in their reset state.		0b01	1 (SW)

3.3.2.46 Receive MAC FIFOs Registers

Address: 0x0c40 Width [bit]: 7 x 32

Initialization or re-arrangement of a MAC FIFO should ever start from reset state.

Bit	Name	Description	Write	Read	Reset (pri- vate)
	Receive MAC FIFO	End Address (Offset: 0x00, width: 32)			
31:7	Reserved				
6:0	End Address	End Address in qwords of this queue in internal dual port memory. Max = reset value, min = 0x04 Reset value should be used.	yes (for init/ tests only)	aw	0x7f
	Receive MAC FIFO width: 32)	Almost Full Threshold (Offset: 0x04,			
31:7	Reserved				
6:0	Almost Full Threshold	Almost Full Threshold in qwords	yes (for tests only)	value	0x70
	Receive MAC FIFO	Control/Test (Offset: 0x08, width: 32)			
31:28	Reserved				
27	Truncation Enable	Controls truncation of packets within FIFO	exec	0b10	0
26	Truncation Dis- able	Default: disabled 0b01		0b01	1
25	VLAN Enable	Enables/disables VLAN stripping	exec	0b10	0
24	VLAN Disable	Default: disabled 0b01		0b01	1
23:15	Reserved				
14	Write Pointer Test On	Testmode ON/OFF	exec	0b10	0
13	Write Pointer Test Off			0b01	1
12	Write Pointer Step	Write Pointer increment	exec	0	

Bit	Name	Description	Write	Read	Reset (pri- vate)
11	Reserved				
10	Read Pointer Test On	Testmode ON/OFF	exec	0b10	0
9	Read Pointer Test Off			0b01	1
8	Read Pointer Step	Read Pointer increment	exec	0	
	Receive MAC FIFO	Control			
7	FIFO Flush On	FIFO Flush mode ON/OFF	exec	0b10	0
6	FIFO Flush Off	When set to ON packets of size below the FIFO Flush Threshold are flushed, if a bit of its Status matches a one in the FIFO Flush Mask. When set to OFF no packets are flushed.		0b01	1
5	Clear IRQ Receive FIFO Overrun	Receive FIFO Overrun Interrupt	exec	0	
4	Clear IRQ Frame Reception Com- plete	Frame Reception Complete Interrupt	exec	0	
3	Operational On	Operational mode ON/OFF	exec	0b10	0
2	Operational Off	OFF resets all activities of this FIFO for initialization of the pointers and registers		0b01	1
1	MAC FIFO Reset Clear	Set/Clear MAC FIFO Reset. Executed, if appropriate bit is set to 1.	exec	0b10	0 (SW)
0	MAC FIFO Reset Set	If MAC FIFO Reset is set, all FIFO functions and Registers are in their reset state.		0b01	1 (SW)
	Receive MAC FIFO	Flush Mask (Offset: 0x0c, width: 32)			
31:15	Reserved				
14	Length Error				
13	VLAN packet		yes	aw	0
12	Jabber		yes	aw	0

Bit	Name	Description	Write	Read	Reset (pri- vate)
11	Undersize packet		yes	aw	0
10	Multicast packet		yes	aw	0
9	Broadcast packet		yes	aw	0
8	Receive OK		yes	aw	0
7	Good flow con- trol packet		yes	aw	0
5	MII error		yes	aw	0
4	Too long packet		yes	aw	0
3	Fragment		yes	aw	0
2	reserved		yes	aw	0
1	CRC error		yes	aw	0
0	Receive FIFO overflow		yes	aw	0
	Receive MAC FIFO	Flush Threshold (Offset: 0x10, width: 32)			
31:7	Reserved				
6:0	Flush Threshold	The Flush threshold is defined in FIFO words (8 bytes).	yes	aw	0x0a
	Receive Truncation	Threshold (Offset: 0x14, width: 32)			
31:7	Reserved				
6:0	Truncation Threshold	The truncation threshold is defined in FIFO words (8 bytes). Loaded with the desired number of receive dwords -2. Example: For the acceptance of only the first ten bytes of a packet a value of eight is written into this register.	yes	aw	0x0a
	Receive VLAN Type	Register (Offset: 0x1c, width: 32)			
31:16	Reserved				

Bit	Name	Description	Write	Read	Reset (pri- vate)
15:0	Receive VLAN Type	Code of received VLAN Type. Default: 0x8100 The byte order within the VLAN Type value is big endian: The MSB is in the lower byte (bit 7:0) and the LSB is in the higher byte (bit 15:8).	yes (for tests only)	value	0x8100
	Receive MAC FIFO	Write Pointer (Offset: 0x20, width: 32)			
31:7	Reserved				
6:0	Write Pointer	Write Pointer in qwords of this queue in internal dual port memory.	yes (for tests only)	value	0
	Receive MAC FIFO	Write Level (Offset: 0x28, width: 32)			
31:7	Reserved				
6:0	Write Level	Level gives the current number of data in multiples of 8 bytes in this queue (including 16 bytes Statusword per packet).	ne	value	0
	Receive MAC FIFO	Read Pointer (Offset: 0x30, width: 32)			
31:7	Reserved				
6:0	Read Pointer	Read Pointer in qwords of this queue in internal dual port memory.	yes (for tests only)	value	0
	Receive MAC FIFO	Read Level (Offset: 0x38, width: 32)			
31:7	Reserved				
6:0	Read Level	Level gives the current number of data in multiples of 8 bytes in this queue (including 16 bytes Statusword per packet).	ne	value	0

3.3.2.47 Transmit MAC FIFOs Registers

Address: 0x0d40 Width [bit]: 10 x 32

Bit	Name	Description	Write	Read	Reset (pri- vate)
	Transmit MAC FIFO	End Address (Offset: 0x00, width: 32)			
31:7	Reserved				
6:0	End Address	End Address in qwords of this queue in internal dual port memory. Max = reset value, min = 0x04 Reset value should be used.	yes (for init/ tests only)	aw	0x7f
	Transmit MAC FIFO width: 32)	O Almost Empty Threshold (Offset: 0x04,			
31:7	Reserved				
6:0	Almost Empty Threshold	Almost Empty Threshold in qwords	yes (for tests only)	value	0x10
	Transmit MAC FIFO	O Control/Test (Offset: 0x08, width: 32)			
31:26	Reserved				
25	VLAN Enable	Enables/disables VLAN tagging	exec	0b10	0
24	VLAN Disable	Default: disabled 0b01		0b01	1
23:19	Reserved				
18	Write Shadow Pointer Test On	Testmode ON/OFF	exec	0b10	0
17	Write Shadow Pointer Test Off			0b01	1
16	Write Shadow Pointer Step	Write Pointer increment	exec	0	
15	Reserved				

Bit	Name	Description	Write	Read	Reset (pri- vate)
14	Write Pointer Test On	Testmode ON/OFF	exec	0b10	0
13	Write Pointer Test Off			0b01	1
12	Write Pointer Step	Write Pointer increment	exec	0	
11	Reserved				
10	Read Pointer Test On	Testmode ON/OFF	exec	0b10	0
9	Read Pointer Test Off			0b01	1
8	Read Pointer Step	Read Pointer increment	exec	0	
	Transmit MAC FIFO	Control			
7	Reserved				
6	Clear IRQ Trans- mit FIFO Under- run	Transmit FIFO Underrun Interrupt	exec	0	
5	Clear IRQ Frame Transmission Complete	Frame Transmission Complete Interrupt	exec	0	
4	Clear IRQ Parity Error	Clear Parity Error Interrupt	exec	0	
3	Operational On	Operational mode ON/OFF	exec	0b10	0
2	Operational Off	OFF resets all activities of this FIFO for initialization of the pointers and registers		0b01	1
1	MAC FIFO Reset Clear	Set/Clear MAC FIFO Reset. Executed, if appropriate bit is set to 1.	exec	0b10	0 (SW)
0	MAC FIFO Reset Set	If MAC FIFO Reset is set, all FIFO functions and Registers are in their reset state.		0b01	1 (SW)
	Transmit VLAN Typ	e Register (Offset: 0x1c, width: 32)			
31:16	Reserved				

Bit	Name	Description	Write	Read	Reset (pri- vate)
15:0	Transmit VLAN Type	Code of transmitted VLAN Type. Default: 0x8100 The byte order within the VLAN Type value is big endian: The MSB is in the lower byte (bit 7:0) and the LSB is in the higher byte (bit 15:8).	yes (for tests only)	value	0x8100
	Transmit MAC FIFO	Write Pointer (Offset: 0x20, width: 32)			
31:7	Reserved				
6:0	Write Pointer	Write Pointer in qwords of this queue in internal dual port memory.	yes (for tests only)	value	0
	Transmit MAC FIFO width: 32)	O Write Shadow Pointer (Offset: 0x24,			
31:7	Reserved				
6:0	Write Shadow Pointer	Write Shadow Pointer in qwords of this queue in internal dual port memory.	yes (for tests only)	value	0
	Transmit MAC FIFO	O Write Level (Offset: 0x28, width: 32)			
31:7	Reserved				
6:0	Write Level	Level gives the current number of data in multiples of 8 bytes in this queue (including 16 bytes Statusword per packet).	ne	value	0
	Transmit MAC FIFO	Read Pointer (Offset: 0x30, width: 32)			
31:7	Reserved				
6:0	Read Pointer	Read Pointer in qwords of this queue in internal dual port memory.	yes (for tests only)	value	0
	Transmit MAC FIFO	Restart Pointer (Offset: 0x34, width: 32)			
31:7	Reserved				

Bit	Name	Description	Write	Read	Reset (pri- vate)
6:0	Restart Pointer	Restart Pointer in qwords of this queue in internal dual port memory.	yes (for tests only)	value	0
	Transmit MAC FIFO	Read Level (Offset: 0x38, width: 32)			
31:7	Reserved				
6:0	Read Level	Level gives the current number of data in multiples of 8 bytes in this queue (including 16 bytes Statusword per packet).	ne	value	0

3.3.2.48 Descriptor Poll Timer Registers

Address: 0x0e00 Width [bit]: 3 x 32

The Poll Timer generates a periodical trigger signal for all BMUs setting **START xxx** such initiating a descriptor read.

This may be enabled for each BMU individually through En Polling in the BMU's Control/Status Registers.

Bit	Name	Description	Write	Read	Reset (SW)
	Descriptor Poll Tim	ner Init Value			
31:0	Init Value	Descriptor Poll Timer Init Value	yes	aw	0
	Descriptor Poll Tim	ner			
31:0	Descriptor Poll Timer	Multiples of core clock (125 MHz) Cycle Time T _{Max} = 27.53 s	ТО	value	0
	Descriptor Poll Tim	ner Control/Test			
		Test			
31:19	Reserved				
18	Descriptor Poll Timer Test On	Testmode ON/OFF	exec	0b10	0
17	Descriptor Poll Timer Test Off			0b01	1

Bit	Name	Description	Write	Read	Reset (SW)
16	Descriptor Poll Timer Step	Timer decrement	exec	0	
15:8	Reserved				
		Control			
7:3	Reserved				
2	Descriptor Poll Timer Start	Start/Stop Timer	exec	0b10	0
1	Descriptor Poll Timer Stop			0b01	1
0	Reserved				

The timer implements write posting and retries the following accesses to the timer while a posted write is in progress.

Target reads are retried until the addressed register is synchronized to PCI Clock.

3.3.2.49 Timestamp Timer Registers

Address: 0x0e10 Width [bit]: 3 x 32

The Timestamp Timer generates the timebase for the timestamp, which is passed to each frame's descriptor. When wrapping around from 0xffff_ffff to 0x0000_0000 it generates an interrupt.

Bit	Name	Description	Write	Read	Reset (SW)
31:0	Reserved				
	Timestamp Timer				
31:0	Timestamp Timer	Multiples of core clock (125 MHz) Cycle Time	yes (for tests only)	value	0
	Timestamp Timer C	Control/Test			
		Test			
31:11	Reserved				

Bit	Name	Description	Write	Read	Reset (SW)
10	Timestamp Timer Test On	Testmode ON/OFF	exec	0b10	0
9	Timestamp Timer Test Off			0b01	1
8	Timestamp Timer Step	Timer increment	exec	0	
		Control			
7:3	Reserved				
2	Timestamp Timer Start	Start/Stop Timer When started, timer starts counting from	exec	0b10	0
1	Timestamp Timer Stop	value ZERO.		0b01	1
0	Timestamp Timer Clear IRQ	Clear Timer Interrupt	exec	0	

The timer implements write posting and retries the following accesses to the timer while a posted write is in progress.

Target reads are retried until the addressed register is synchronized to PCI Clock.

3.3.2.50 Polling Unit Registers

Address: 0x0e20 Width [bit]: 4 x 32

Bit	Name	Description	Write	Read	Reset (Link)
	Poll Control Register (address: 0x0e20, width: 32)				
31:6	Reserved				
5	Clear IRQ	Clears the check IRQ generated by the Polling Unit.	exec	0	0
4	Poll Request	For testing purpose a Poll Request can be started by SW by writing a 1 to this bit.	exec	0	0

Bit	Name	Description	Write	Read	Reset (Link)
3	Operational On	Operational mode ON/OFF	exec	0b10	0
2	Operational Off	OFF resets all activities of the polling unit for initialization of the pointers and registers. The default operation is disabled.		0b01	1
1	POLLU Reset Clear	Set/Clear Poll Unit Reset. Executed, if appropriate bit is set to 1.	exec	0b10	0
0	POLLU Reset Set	If Poll Unit Reset is set, the integrated POLLU and the POLLU Target Interface are in their reset state.		0b01	1
List Last	Index (address: 0x0e	24, width: 12))			
31:12	Reserved				
11:0	List Last Index	Specifies the index of the last entry in the list. The descriptor element length is defined by List Last Index + 1. The length is given as number of list elements. The length is fixed. Only 2 LE (dual link version) are read each time.	no	0x001	0x001
List Start	Address Low (addre	ess: 0x0e28, width: 32)			
31:3		Identifies the lower 32 bit of the start address of the descriptor list in the system memory.	yes	aw	0x0
2:0		The address is always aligned to Descriptor List Element size, i.e. 8 byte boundaries, i.e. the lower bits are always 0x0.	ne	0x0	0x0
List Start	Address High (addre	ess: 0x0e2c, width: 32)			
31:0		Identifies the upper 32 bit of the start address of the descriptor list in the system memory.	yes	aw	0x0

CONFIDENTIAL

3.3.2.51 Status Unit Registers

Address: 0x0e80 Width [bit]: 24 x 32

Bit	Name	Description	Write	Read	Reset (SW)
Status U	nit Registers				
	Status BMU Contr	ol (offset: 0x00, width: 32)			
31:19	Reserved				
18	Master Request Loopback Test On	Testmode ON/OFF for the Master request, i.e. enables the stepping of the Master request by the SW.	exec	0b10	0
17	Master Request Loopback Test Off	The default operation is disabled.		0b01	1
16	Master Request Loopback Step	Enables the Loopback of a single master request. For execution of this command, the Master Request Loopback Test MUST be set to ON.	exec	0	0
15	Reserved	10 011.			
14	FIFO Read Pointer Test On	Testmode ON/OFF for the FIFO Read Pointer, i.e. enables the stepping of the	exec	0b10	0
13	FIFO Read Pointer Test Off	pointer by the SW. The default operation is disabled.		0b01	1
12	FIFO Read Pointer Step	FIFO Read Pointer increment. For execution of this command, the FIFO Read Pointer Test MUST be set to ON.	exec	0	0
11	Reserved				
10	FIFO Write Pointer Test On	Testmode ON/OFF for the FIFO Write Pointer, i.e. enables the stepping of the	exec	0b10	0
9	FIFO Write Pointer Test Off	pointer by the SW. The default operation is disabled.		0b01	1
8	FIFO Write Pointer Step	FIFO Write Pointer increment. For execution of this command, the FIFO Write Pointer Test MUST be set to ON.	exec	0	0
7:5	Reserved				

Page 194

Bit	Name	Description	Write	Read	Reset (SW)
4	Clear IRQ Status BMU	Clear Status BMU interrupt	exec	0	
3	Operational On	Default Off	exec	0b10	0
2	Operational Off			0b01	1
1	Enable	Default Reset	exec	0b10	0
0	Reset			0b01	1
	Last Index (offset: 0	x04, width: 16)			
31:12	Reserved				
11:0	Last Index	Index of last element of current list	yes	aw	0x007F
		Bit 6:0: fixed value 0x7F List length is a multiple of 128 elements.			
	List Start Address ((offset: 0x08, width: 2 x 32)			
31:0	List Start Ad-	Lower part of list start address	yes	aw	0
	dress Lo	Bit 11:0: fixed value 0x000 Address aligned to 4 KByte boundaries.			
31:0	List Start Ad- dress Hi	Higher part of list start address	yes	aw	0
	TXA Report Index (offset: 0x10, width: 16)			
15:12	Reserved				
11:0	TXA Report Index	Last reported TX Done Index for TXA queue	ne	value	0
15:0	Reserved				
	TX Index Threshold	(offset: 0x18, width: 16)			
15:12	Reserved				
11:0	TX Index Thresh- old	A status burst is initiated when exceeding the threshold.	yes	aw	0xFFF

April 20, 2004, Advanced

Document Classification: Proprietary Information

Bit	Name	Description	Write	Read	Reset (SW)
Put Inde	x (Offset: 0x1c, Widt	h: 16)			
31:12	Reserved				
11:0		Specifies the Push/Wr address within the descriptor list in system memory. This Put Index points to the address of the next free element in the descriptor list (i.e. the position after the last valid element in the descriptor list). If Get Index and Put Index are equal, no element is in the FIFO.	yes	aw	0x0
		The index is given in list element granularity.			
	FIFO Write Point	er (offset: 0x20, width: 8)			
31:6	Reserved				
5:0		FIFO Write Pointer (64 qword FIFO)	ТО	value	0
	FIFO Read Pointe	er (offset: 0x24, width: 8)			
31:6	Reserved				
5:0		FIFO Read Pointer (qword)	то	value	0
	FIFO Level (offset	:: 0x28, width: 8)			
31:6	Reserved				
5:0		FIFO Level (qword)	ne	value	0
	FIFO Watermark	(offset: 0x2c, width: 8)			
7:6	Reserved				
5:0		FIFO Watermark (qword)	yes	aw	0x30
	FIFO ISR Waterm	ark (offset: 0x2d, width: 8)			
7:6	Reserved				
5:0		FIFO ISR Watermark (qword) Watermark relevant during interrupt service routine.	yes	aw	0x08
	Level Timer				
	Level Timer Init \	/alue (offset: 0x30, width: 32)			
31:0	Level Timer Init Value	Level Timer Init Value	yes	aw	0x3d0

Bit	Name	Description	Write	Read	Reset (SW)
	Level Timer Count	er (offset: 0x34, width: 32)			
31:0	Level Timer	Multiples of core clock (125 MHz) Cycle Time T _{Max} = 27.53 s	ТО	value	0
	Level Timer Contro	II/Test (offset: 0x38, width: 32)			
		Test			
31:11	Reserved				
10	Level Timer Test On	Testmode ON/OFF	exec	0b10	0
9	Level Timer Test Off			0b01	1
8	Level Timer Step	Timer decrement	exec	0	
		Control			
7:3	Reserved				
2	Level Timer Start	Start/Stop Level Timer	exec	0b10	0
1	Level Timer Stop			0b01	1
0	Reserved				
	TX Timer				
	TX Timer Init Value	(offset: 0x40, width: 32)			
31:0	TX Timer Init Value	TX Timer Init Value	yes	aw	0
	TX Timer Counter (offset: 0x44, width: 32)			
31:0	TX Timer	Multiples of core clock (125 MHz) Cycle Time	ТО	value	0
		$T_{Max} = 27.53 \text{ s}$			
	TX Timer Control/T	est (offset: 0x48, width: 32)			
		Test			
31:11	Reserved				
10	TX Timer Test On	Testmode ON/OFF	exec	0b10	0
9	TX Timer Test Off			0b01	1
8	TX Timer Step	Timer decrement	exec	0	

Bit	Name	Description	Write	Read	Reset (SW)
		Control			
7:3	Reserved				
2	TX Timer Start	Start/Stop TX Timer	exec	0b10	0
1	TX Timer Stop			0b01	1
0	Reserved				
	ISR Timer				
	ISR Timer Init Val	ue (offset: 0x50, width: 32)			
31:0	ISR Timer Init Value	ISR Timer Init Value	yes	aw	0
	ISR Timer Counte	r (offset: 0x54, width: 32)			
31:0	ISR Timer	Multiples of core clock (125 MHz) Cycle Time T _{Max} = 27.53 s	ТО	value	0
	ISR Timer Control/Test (offset: 0x58, width: 32)				
		Test			
31:11	Reserved				
10	ISR Timer Test On	Testmode ON/OFF	exec	0b10	0
9	ISR Timer Test Off			0b01	1
8	ISR Timer Step	Timer decrement	exec	0	
		Control			
7:3	Reserved				
2	ISR Timer Start	Start/Stop ISR Timer	exec	0b10	0
1	ISR Timer Stop			0b01	1
0	Reserved				

3.3.2.52 MAC Control Registers

Address: 0x0f00 Width [bit]:8

Bit	Name	Description	Write	Read	Reset (Link)
	MAC Control Regis	ter			
15:8	Reserved				
7	En Burstmode On	Enables the FIFO to signal GMAC, that enough packets are available to enter	exec	0b10	0
6	En Burstmode Off	Half Duplex Burst mode.		0b01	1
5	Loopback On	The GMAC Interface may be set to loop-	exec	0b10	0
4	Loopback Off	back mode for testing purposes. Transmit data is looped to receive data. There is no activity at the related GMAC control signals. The Transmit Status (descriptors) MUST be set to the expected Receive Status (descriptors).		0b01	1
3	En Pause On	Enable forwarding of the signal Xmt-	exec	0b10	0
2	En Pause Off	PausePkt to GMAC see also Receive Rambuffer Upper/ Lower Threshold/Pause Packets Must be switched OFF in loopback mode. Settings for GMAC MUST be consistent.		0b01	1
1	GMAC Reset Clear	Set/Clear GMAC Reset . Executed, if appropriate bit is set to 1.	exec	0b10	0
0	GMAC Reset Set	If GMAC Reset is set, the integrated GMAC and the GMAC Target Interface are in their reset state. In order to guarantee a minimum pulse width of 31 core clock cycles, clearing GMAC Reset is suppressed within 31 core clock cycles after GMAC Reset Set. Write cycles to GMAC Reset Clear within the 31 core clock recovery time, are terminated with a Target Retry (no impact on software).		0b01	1

3.3.2.53 PHY MUX Register and PHY Control Register

Address: 0x0f04 Width [bit]:8 + 24

The PHY Control Register contains settings for the PHY.

The meaning of the seven configuration pins is described in "88E1111 Integrated 10/100/1000 Gigabit Ethernet Transceiver", Marvell, Doc. No. MV-S100707-00 - Hardware Configuration.

Bit	Name	Description	Write	Read	Reset (Link)
	PHY MUX Register	, loaded from external memory			
31:29	Reserved				
28:26	MUX6	3 Bit Multiplexer Setting for Config6 Pin	yes	aw	0b000
25:23	MUX5	3 Bit Multiplexer Setting for Config5 Pin	yes	aw	0b000
22:20	MUX4	3 Bit Multiplexer Setting for Config4 Pin	yes	aw	0b000
19:17	MUX3	3 Bit Multiplexer Setting for Config3 Pin	yes	aw	0b000
16:14	MUX2	3 Bit Multiplexer Setting for Config2 Pin	yes	aw	0b000
13:11	MUX1	3 Bit Multiplexer Setting for Config1 Pin	yes	aw	0b000
10:8	MUX0	3 Bit Multiplexer Setting for Config0 Pin	yes	aw	0b000
	PHY Control Regis	ter			
7:2	Reserved				
1	PHY Reset Clear	Set/Clear PHY Reset.	exec	0b10	0
0	PHY Reset Set	Executed, if appropriate bit is set to 1. If PHY Reset is set, the integrated PHY is in its reset state. In order to guarantee a minimum pulse width of 31 core clock cycles, clearing PHY Reset is suppressed within 31 core clock cycles after PHY Reset Set. Write cycles to PHY Reset Clear within the 31 core clock recovery time, are terminated with a Target Retry (no impact on software).		0b01	1

Table 28: Pin to Constant Mapping (MUX to CONFIG pins)

PIN	BIT<2:0>
VDD (=1)	111
LED_LINK10/100	101
LED_LINK1000	100
LED_LINKn	011
LED_ACTn	010
VSS (=0)	000

3.3.2.54 MAC Interrupt Source Register

Address:0x0f08 Width [bit]:8 If set to one, interrupt is pending.

Bit	Name	Description	Write	Read	Reset (SW)
MAC Inte	MAC Interrupt Source Register				
31:6	Reserved				
5	Transmit Counter Overflow Inter- rupt	One or more bits are set in the Transmit Counter Interrupt Register	ne	value	0
4	Receive Counter Overflow Inter- rupt	One or more bits are set in the Receive Counter Interrupt Register.	ne	value	0
3	Transmit FIFO Underrun	Underrun condition in the Tx MAC FIFO	ne	value	0
2	Frame Transmission Complete	Frame Transmission Complete. Frame is copied from the Tx MAC FIFO and transmitted by the MAC successfully	ne	value	0
1	Receive FIFO Overrun	Overflow condition in the Rx MAC FIFO	ne	value	0
0	Frame Reception Complete	Frame Reception Complete. Frame is copied into the Rx MAC FIFO successfully	ne	value	0

3.3.2.55 MAC Interrupt Mask Register

Address: 0x0f0c Width [bit]:8

The enable bits have the same bit positions as in the MAC Interrupt Source Register.

If set to one, interrupt is enabled.

Bit	Name	Description	Write	Read	Reset (SW)
	MAC Interrupt Mask Register				
31:0	En IRQ xxx	Enable Interrupt xxx	yes	aw	0

3.3.2.56 Link Control Register

Address: 0x0f10 Width [bit]:8

The Link Control Register contains settings for the parts needed to establish a link.

Bit	Name	Description	Write	Read	Reset (Power on)
	Link Control Regist	ter			
15:2	Reserved				
1	Link Reset Clear	Set/Clear Link Reset.	exec	0b10	0
0	Link Reset Set	Executed, if appropriate bit is set to 1. If Link Reset is set, the WOL Unit, the MAC Control Register and the PHY Control Register are in their reset state. This also implies that the integrated GMAC and PHY are also in their reset state.		0b01	1

Page 202

Document Classification: Proprietary Information

3.3.2.57 Wake on LAN Control Registers

Base address: 0x0f20 Width [bit]:8 x 32

The Wake on LAN Control Registers are used to control the Wake up Frame Unit, the Magic Pattern Unit and the Link Change Unit.

Bit	Name	Description	Write	Read	Reset (Link)
	Match Result Regis	ster (offset: 0x03, width: 8)			
31	Reserved				
30	Pattern 6 Match	If set, the last incoming packet matched	ne	value	0b0
29	Pattern 5 Match	with pattern number <x></x>	ne	value	0b0
28	Pattern 4 Match		ne	value	0b0
27	Pattern 3 Match		ne	value	0b0
26	Pattern 2 Match		ne	value	0b0
25	Pattern 1 Match		ne	value	0b0
24	Pattern 0 Match		ne	value	0b0
	Match Control Regi	ister (offset: 0x02, width: 8)			
23	Reserved				
22	Pattern 6 Enable	If set, pattern number <x> is compared</x>	yes	aw	0b0
21	Pattern 5 Enable	with incoming packets	yes	aw	0b0
20	Pattern 4 Enable		yes	aw	0b0
19	Pattern 3 Enable		yes	aw	0b0
18	Pattern 2 Enable		yes	aw	0b0
17	Pattern 1 Enable		yes	aw	0b0
16	Pattern 0 Enable		yes	aw	0b0
	WOL Control/Status	s Register (offset: 0x00, width: 16)			
15	Link Change Status	Set, if a Link Change wake up event oc- curred	ne	value	0
14	Magic Pattern Status	Set, if a Magic Pattern wake up event oc- curred	ne	value	0
13	Wake up Frame Status	Set, if a Wake up Frame wake up event occurred	ne	value	0

Bit	Name	Description	Write	Read	Reset (Link)
12	Clear Match Result	Clears the Magic Pattern Status and Link Change Status bits in the WOL Control/Status Register and the Match bits in the Match Result Register.	exec	0	
11	Enable PME on Link Change	Enable/Disable PME on Link Change. Executed, if appropriate bit is set to 1.	exec	0b10	0
10	Disable PME on Link Change	If PME on Link Change is enabled and PME EN in the PCI Power Management Control Register is set, PME# on the PCI bus is asserted on a successful pattern match in the Link Change unit.		0b01	1
9	Enable PME on Magic Pattern	Enable/Disable PME on Magic Pattern. Executed, if appropriate bit is set to 1.	exec	0b10	0
8	Disable PME on Magic Pattern	If PME on Magic Pattern is enabled and PME EN in the PCI Power Management Control Register is set, PME# on the PCI bus is asserted on a successful pattern match in the Magic Pattern unit.		0b01	1
7	Enable PME on Wake up Frame	Enable/Disable PME on Wake up Frame.	exec	0b10	0
6	Disable PME on Wake up Frame	Executed, if appropriate bit is set to 1. If PME on Wake up Frame is enabled and PME EN in the PCI Power Management Control Register is set, PME# on the PCI bus is asserted on a successful pattern match in the Wake up Frame unit.		0b01	1
5	Enable Link Change Unit	Enable/Disable Link Change Unit. Executed, if appropriate bit is set to 1.	exec	0b10	0
4	Disable Link Change Unit	If Link Change Unit is enabled, on each Link Up Event the Link Change Status bit in the WOL Control/Status Register is set and depending on the PME settings PME# is asserted.		0b01	1
3	Enable Magic Pattern Unit	Enable/Disable Magic Pattern Unit. Executed, if appropriate bit is set to 1.	exec	0b10	0
2	Disable Magic Pattern Unit	If Magic Pattern Unit is enabled, each incoming packet is compared to the AMD Magic Pattern. If a pattern match occurs the corresponding Magic Pattern Status bit in the WOL Control/Status Register is set and depending on the PME settings PME# is asserted.		0b01	1

Bit	Name	Description	Write	Read	Reset (Link)
1	Enable Wake up Frame Unit	Enable/Disable Wake up Frame Unit. Executed, if appropriate bit is set to 1.	exec	0b10	0
0	Disable Wake up Frame Unit	If Wake up Frame Unit is enabled, each incoming packet is compared to each of the 7 wake up pattern stored in the Pattern RAM that has its corresponding Pattern Enable bit set. If a pattern match occurs the corresponding Pattern Match bit in the Match Result Register is set and depending on the PME settings PME# is asserted.		0b01	1
	Reserved				
31	Reserved				
30	Reserved		yes	aw	0
29	Reserved		yes	aw	0
28	Reserved		yes	aw	0
27	Reserved		yes	aw	0
26	Reserved		yes	aw	0
25	Reserved		yes	aw	0
24	Reserved		yes	aw	0
	PME Match Enable	Register (offset: 0x0a, width: 8)			
23	Force PME	Generates a PME event	exec	0	0
22	PME 6 Enable	If set, incoming packets that match with	yes	aw	0
21	PME 5 Enable	pattern number <x> will generate a PME event.</x>	yes	aw	0
20	PME 4 Enable		yes	aw	0
19	PME 3 Enable		yes	aw	0
18	PME 2 Enable		yes	aw	0
17	PME 1 Enable		yes	aw	0
16	PME 0 Enable		yes	aw	0
	MAC Address Regi	ster High (offset: 0x08, width: 16)			
15:8	MAC<5>	Mac-Address, Byte 5	yes	aw	0
7:0	MAC<4>	Mac-Address, Byte 4	yes	aw	0

Bit	Name	Description	Write	Read	Reset (Link)
	MAC-Address Reg	isters low (offset: 0x04, width: 32)			
31:24	MAC<3>	Mac-Address, Byte 3	yes	aw	0
23:16	MAC<2>	Mac-Address, Byte 2	yes	aw	0
15:8	MAC<1>	Mac-Address, Byte 1	yes	aw	0
7:0	MAC<0>	Mac-Address, Byte 0	yes	aw	0
	Pattern Read Point	ter Register (offset: 0x0c, width: 7)			
31:7	Reserved				
6:0	Pattern Read Pointer	Address of the current 128 bit word in Pattern RAM to be compared, can be written for test purposes only	yes, for Test only	value	0x00
	Pattern Length Re	gister 0 (0 - 3) (offset: 0x10, width: 4 x 8)			
31	Reserved				
30:24	Pattern 3 Length	Number of bytes - 1 to compare for Pattern 3 When pattern length is 64 bytes then value 63 is written to this register. Minimum allowed pattern length is 6 bytes	yes	aw	0x00
23	Reserved				
22:16	Pattern 2 Length	Number of bytes - 1 to compare for Pattern 2 When pattern length is 64 bytes then value 63 is written to this register. Minimum allowed pattern length is 6 bytes.	yes	aw	0x00
15	Reserved				
14:8	Pattern 1 Length	Number of bytes - 1 to compare for Pattern 1 When pattern length is 64 bytes then value 63 is written to this register. Minimum allowed pattern length is 6 bytes.	yes	aw	0x00
7	Reserved				

Bit	Name	Description	Write	Read	Reset (Link)
6:0	Pattern 0 Length	Number of bytes - 1 to compare for Pattern 0 When pattern length is 64 bytes then value 63 is written to this register. Minimum allowed pattern length is 6 bytes	yes	aw	0x00
	Pattern Length Reg	gister 1 (4 - 6) (offset: 0x14, width: 3 x 8)			
31:23	Reserved				
22:16	Pattern 6 Length	Number of bytes - 1 to compare for Pattern 6 When pattern length is 64 bytes then value 63 is written to this register. Minimum allowed pattern length is 6 bytes	yes	aw	0x00
15	Reserved				
14:8	Pattern 5 Length	Number of bytes - 1 to compare for Pattern 5. When pattern length is 64 bytes then value 63 is written to this register. Minimum allowed pattern length is 6 bytes	yes	aw	0x00
7	Reserved				
6:0	Pattern 4 Length	Number of bytes - 1 to compare for Pattern 4 When pattern length is 64 bytes then value 63 is written to this register. Minimum allowed pattern length is 6 bytes	yes	aw	0x00
	Pattern Counter Re	egister 0 (0 - 3) (offset: 0x18, width: 4 x 8)			
31	Reserved				
30:24	Pattern 3 Counter	Current byte to compare for Pattern 3	TO	value	0x00
23	Reserved				
22:16	Pattern 2 Counter	Current byte to compare for Pattern 2	TO	value	0x00
15	Reserved				
14:8	Pattern 1 Counter	Current byte to compare for Pattern 1	TO	value	0x00
7	Reserved				

April 20, 2004, Advanced

Page 207

Bit	Name	Description	Write	Read	Reset (Link)
6:0	Pattern 0 Counter	Current byte to compare for Pattern 0	ТО	value	0x00
	Pattern Counter Register 1 (4 - 6) (offset: 0x1c, width: 3 x 8)				
31:23	Reserved				
22:16	Pattern 6 Counter	Current byte to compare for Pattern 6	ТО	value	0x00
15	Reserved				
14:8	Pattern 5 Counter	Current byte to compare for Pattern 5	ТО	value	0x00
7	Reserved				
6:0	Pattern 4 Counter	Current byte to compare for Pattern 4	ТО	value	0x00

3.3.2.58 Pattern RAM

Address: 0x1000 - 0x13fc (link 1) Width [bit]:256 x 32 bit

For accesses to the Pattern RAM the WOL pattern matching must be disabled before (set bits 1:0 of WOL Control Register to 0b01 (inactive)).

The Pattern RAM is fully mapped into the I/O space and occupies 256 consecutive 32 bit words. During read accesses data is read directly from RAM and no special sequence is needed. For write accesses the four 32 bit dwords of a 128 bit RAM word are collected in a 128 bit register and the write access to the uppermost dword (address: 0x0c, 0x1c,...) causes the register contents to be written into the RAM. Therefore the lower three dwords have to be written first. The Pattern RAM contents are undetermined after power on.

Bit	Name	Description	Write	Read	Reset (None)
	Pattern RAM				
31:0	Lower Half qword No. 0	(offset: 0x00, width: 32 bit) Read reads RAM directly, Write writes only intermediate Register	yes	aw	Obxxxx xxxx
31:0	Upper Half qword No. 0	(offset: 0x04, width: 32 bit) Read reads RAM directly, Write writes only intermediate Register	yes	aw	0bxxxx xxxx
31:0	Lower Half qword No. 1	(offset: 0x08, width: 32 bit) Read reads RAM directly, Write writes only intermediate Register	yes	aw	Obxxxx xxxx

Page 208

Bit	Name	Description	Write	Read	Reset (None)
31:0	Upper Half qword No. 1	(offset: 0x0c, width: 32 bit) Read reads RAM directly, Write triggers write of 128 bit in RAM	yes	aw	Obxxxx xxxx
31:0	Lower Half qword No. 126	(offset: 0x3f0, width: 32 bit) Read reads RAM directly, Write writes only intermediate Register	yes	aw	Obxxxx xxxx
31:0	Upper Half qword No. 126	(offset: 0x3f4, width: 32 bit) Read reads RAM directly, Write writes only intermediate Register	yes	aw	Obxxxx xxxx
31:0	Lower Half qword No. 127	(offset: 0x3f8, width: 32 bit) Read reads RAM directly, Write writes only intermediate Register	yes	aw	Obxxxx xxxx
31:0	Upper Half qword No. 127	(offset: 0x3fc, width: 32 bit) Read reads RAM directly, Write triggers write of 128 bit in RAM	yes	aw	Obxxxx xxxx

3.3.2.59 TCP Segmentation Header Registers

There are four sets of 34 TCP Segmentation Header Registers:

TCP Segmentation Header Registers:

Address: 0x1900 - 0x1984 (asynchronous) Width [bit]: 34 x 32

All sets of Header Registers have the same structure.

All registers are written and read by the TCP Segmentation logic automatically. They can be accessed (read/write) through YTB for debug purposes.

Bit	Name	Description	Write	Read	Reset (Link)
TCP Seg	mentation Header Re	gister 0 Lo (offset: 0x00 width: 32)			
31:0	MAC_HDR_0	Word 0/1 of MAC Header	yes	value	0x0
TCP Seg	TCP Segmentation Header Register 0 Hi (offset: 0x04 width: 32)				
31:0	MAC_HDR_1	Word 2/3 of MAC Header	yes	value	0x0
TCP Seg	TCP Segmentation Header Register 1 Lo (offset: 0x08 width: 32)				
31:0	MAC_HDR_2	Word 4/5 of MAC Header	yes	value	0x0

Bit	Name	Description	Write	Read	Reset (Link)
TCP Seg	mentation Header Re	egister 1 Hi (offset: 0x0c width: 32)			
31:16	IP_HDR_0	Word 0 of IP Header	yes	value	0x0
15:0	MAC_HDR_3	Word 6 of MAC Header	yes	value	0x0
TCP Seg	mentation Header Re	egister 2 Lo (offset: 0x10 width: 32)			
31:0	IP_HDR_1	Word 1/2 of IP Header	yes	value	0x0
TCP Seg	mentation Header Re	egister 2 Hi (offset: 0x14 width: 32)			
31:0	IP_HDR_2	Word 3/4 of IP Header	yes	value	0x0
TCP Seg	mentation Header Re	egister 3 Lo (offset: 0x18 width: 32)			
31:0	IP_HDR_3	Word 5/6 of IP Header	yes	value	0x0
TCP Seg	mentation Header Re	egister 3 Hi (offset: 0x1c width: 32)			
31:0	IP_HDR_4	Word 7/8 of IP Header	yes	value	0x0
TCP Seg	mentation Header Re	egister 4 Lo (offset: 0x20 width: 32)			
31:16	IP_OPT_0	Word 0 of IP Header Options ¹	yes	value	0x0
15:0	IP_HDR_5	Word 9 of IP Header	yes	value	0x0
TCP Seg	mentation Header Re	egister 4 Hi (offset: 0x24 width: 32)			
31:0	IP_OPT_1	Word 1/2 of IP Header Options	yes	value	0x0
TCP Seg	mentation Header Re	egister 5 Lo (offset: 0x28 width: 32)			
31:0	IP_OPT_2	Word 3/4 of IP Header Options	yes	value	0x0
TCP Seg	mentation Header Re	egister 5 Hi (offset: 0x2c width: 32)			
31:0	IP_OPT_3	Word 5/6 of IP Header Options	yes	value	0x0
TCP Seg	mentation Header Re	egister 6 Lo (offset: 0x30 width: 32)			
31:0	IP_OPT_4	Word 7/8 of IP Header Options	yes	value	0x0
TCP Seg	mentation Header Re	egister 6 Hi (offset: 0x34 width: 32)			
31:0	IP_OPT_5	Word 9/10 of IP Header Options	yes	value	0x0
TCP Seg	mentation Header Re	egister 7 Lo (offset: 0x38 width: 32)			
31:0	IP_OPT_6	Word 11/12 of IP Header Options	yes	value	0x0
TCP Seg	mentation Header Re	egister 7 Hi (offset: 0x3c width: 32)			
31:0	IP_OPT_7	Word 13/14 of IP Header Options	yes	value	0x0

Bit	Name	Description	Write	Read	Reset (Link)
TCP Seg	mentation Header Re	egister 8 Lo (offset: 0x40 width: 32)			
31:0	IP_OPT_8	Word 15/16 of IP Header Options	yes	value	0x0
TCP Seg	mentation Header Re	egister 8 Hi (offset: 0x44 width: 32)			
31:0	IP_OPT_9	Word 17/18 of IP Header Options	yes	value	0x0
TCP Seg	mentation Header Re	egister 9 Lo (offset: 0x48 width: 32)			
31:16	TCP_HDR_0	Word 0 of TCP Header	yes	value	0x0
15:0	IP_OPT_10	Word 19 of IP Header Options	yes	value	0x0
TCP Seg	mentation Header Re	egister 9 Hi (offset: 0x4c width: 32)			
31:0	TCP_HDR_1	Word 1/2 of TCP Header	yes	value	0x0
TCP Seg	mentation Header Re	egister 10 Lo (offset: 0x50 width: 32)			
31:0	TCP_HDR_2	Word 3/4 of TCP Header	yes	value	0x0
TCP Seg	mentation Header Re	egister 10 Hi (offset: 0x54 width: 32)			
31:0	TCP_HDR_3	Word 5/6 of TCP Header	yes	value	0x0
TCP Seg	mentation Header Re	egister 11 Lo (offset: 0x58 width: 32)			
31:0	TCP_HDR_4	Word 7/8 of TCP Header	yes	value	0x0
TCP Seg	mentation Header Re	egister 11 Hi (offset: 0x5c width: 32)			
31:16	TCP_OPT_0	Word 0 of TCP Header Options ²	yes	value	0x0
15:0	TCP_HDR_5	Word 9 of TCP Header	yes	value	0x0
TCP Seg	mentation Header Re	egister 12 Lo (offset: 0x60 width: 32)			
31:0	TCP_OPT_1	Word 1/2 of TCP Header Options	yes	value	0x0
TCP Seg	mentation Header Re	egister 12 Hi (offset: 0x64 width: 32)			
31:0	TCP_OPT_2	Word 3/4 of TCP Header Options	yes	value	0x0
TCP Seg	mentation Header Re	egister 13 Lo (offset: 0x68 width: 32)			
31:0	TCP_OPT_3	Word 5/6 of TCP Header Options	yes	value	0x0
TCP Seg	mentation Header Re	egister 13 Hi (offset: 0x6c width: 32)			
31:0	TCP_OPT_4	Word 7/8 of TCP Header Options	yes	value	0x0
TCP Seg	mentation Header Re	egister 14 Lo (offset: 0x70 width: 32)			
31:0	TCP_OPT_5	Word 9/10 of TCP Header Options	yes	value	0x0

Bit	Name	Description	Write	Read	Reset (Link)			
TCP Seg	mentation Header Re							
31:0	TCP_OPT_6	Word 11/12 of TCP Header Options	yes	value	0x0			
TCP Seg	mentation Header Re	egister 15 Lo (offset: 0x78 width: 32)						
31:0	TCP_OPT_7	T_7 Word 13/14 of TCP Header Options		value	0x0			
TCP Seg	mentation Header Re	egister 15 Hi (offset: 0x7c width: 32)						
31:0	TCP_OPT_8	Word 15/16 of TCP Header Options		value	0x0			
TCP Seg	TCP Segmentation Header Register 16 Lo (offset: 0x80 width: 32)							
31:0	TCP_OPT_9 Word 17/18 of TCP Header Options		yes	value	0x0			
TCP Seg	TCP Segmentation Header Register 16 Hi (offset: 0x84 width: 32)							
31:16	Reserved		0x0	0x0	0x0			
15:0	TCP_OPT_10	Word 19 of TCP Header Options	yes	value	0x0			

- The IP Header Option registers are optional. If the IP Header Options don't exist at all or only partially exist, the TCP Header registers and TCP Header Option registers move up accordingly.
- 2. The TCP Header Option registers are optional. If the TCP Header Options don't exist at all or only partially exist, the unused TCP Header Option registers are undefined.

3.3.2.60 PCI Configuration Register File

Address: 0x1c00 - 0x1efc

The whole Configuration Register File is made accessible within this address area of the control register file.

It is read only with some exceptions: **Our Register 1** and **2** and **VPD Address** and **VPD Data Register** may be written.

Write operations are completed normally on the bus and the data is discarded.

For testing purposes, the Configuration Register File may be set writable by En Config Write.

3.4 GMAC Registers

All GMAC Registers are mapped into a subsequent range on 32-bit word boundaries. The GMAC interface implements write posting and delayed transactions on read accesses. Target reads are retried until the addressed register is synchronized to PCI Clock. The GMAC's Node Processor Interface is running in 16-bit mode. The offset of the register addresses in the PCI address space is calculated by multiplying the 16-bit XMAC register addresses by 2.

The GMAC Registers can be accessed with any width at dword boundaries. On the PCI side all accesses to the GMAC are completed normally. **MAC Receive Status Word**

Receive Status Word:

Bit(s)	Description
31:16	Byte Count, this field provides byte count of received packet
15:14	Reserved
13	VLAN packet
12	Jabber (a packet that is too long and has a CRC error)
11	Undersize packet (a packet which is less than 64 bytes, but with a good CRC)
10	Multicast packet
9	Broadcast packet
8	Receive OK (good packet)
7	Good flow control packet
6	Bad flow control packet
5	MII error
4	Oversize (packet longer than max. length with good CRC)
3	Fragment
2	Reserved
1	CRC error
0	Receive FIFO overflow

3.4.1 MAC Register Definitions

The registers in the 88E8053 device are accessible through the CPU interface. The SMI (Serial Management Interface) Control Register, SMI data register, and the PHY Address Register are used to read from and write to registers in the PHY.

Table 29: General Purpose Status Register (GPSR)

Offset: 0x2800

(All valid bits in this register are read-only)

Bits	Field		Type/ Reset Value	Description
15	Speed	Read		Port Speed
		Write		This bit is read-only. 0 - 10 Mbps
		Reset	1	1 - 100 Mbps (only valid if GigSpeed bit is 0)
14	Duplex	Read		Port Duplex Mode
		Write		This bit is read-only. 0 - Half duplex
		Reset	0	1 - Full duplex
13	FctlTx	Read		Transmit Flow Control Mode
	Write This bit is read-only. 0 - Flow Control Mode enabled	This bit is read-only. 0 - Flow Control Mode enabled		
		Reset	0	1 - Flow Control Mode disabled
12	Link	Read		Link Status
		Write		This bit is read-only. 0 - Link is down
		Reset	1	1 - Link is up
11	Pause	Read		Port is in "Flow Control Disabled" state, i.e. the transmit state
		Write		machine is in Pause state. This bit is set when an IEEE 802.3x flow-control PAUSE (XOFF)
		Reset	0	packet is received (and flow-control is enabled and the port is in full-duplex mode). Reset when XON is received, or when the XOFF timer has expired. This bit is read-only.
10	TxinProg	Read		TX In Progress
		Write		Indicates that the port's transmitter is in an active transmission state. This bit is read-only.
		Reset	0	
9	ExcessCol	Read		Excessive Collisions Occurred
		Write		Indicates that a packet transmission experienced 16 collisions.
		Reset	0	
8	LateCol	Read		Late Collision Occurred
		Write		A collision occurred beyond 64-bit-times from start of the packet.
		Reset	0	
7:6	Reserved	Read		
		Write		
		Reset	0	

Table 29: General Purpose Status Register (GPSR)
Offset: 0x2800

(All valid bits in this register are read-only)

Bits	Field		Type/ Reset Value	Description
5	MIIPhySTC	Read		MII PHY Status Change
		Write		Indicates a status change reported by the PHY connected to this port. Set, when the MII management interface block identi-
		Reset	0	fies a change in PHY's register 1.
4		This bit is only valid if bit 15 (Speed) is set.		
		Write		0 - follow the Speed bit setting 1 - 1000Mbps operation mode
		Reset	1]
3	Partition	Read		Partition mode
		Write		Indicates that the MAC has entered the Partition Mode. When in this mode, the port transmits pending packets, ignoring the colli-
		Reset	0	sions.
2	FctlRx	Read		Receive Flow Control Mode
		Write		This bit is read-only. 0 - Flow-control mode enabled.
		Reset	0	1 - Flow-control mode disabled.
1	Promiscuous	Read		This bit is set if the device is in Promiscuous mode. This bit will
	Mode	Write		be set to 1 at power up.
		Reset	0	
0	Reserved	Read		Reserved
		Write		
		Reset	0	

Table 30: General Purpose Control Register (GPCR) Offset: 0x2804

Bits	Field		Type/ Reset Value	Description
15:14	Reserved	Read		
		Write		
		Reset		
13	FCTLTX	Read		Transmit Flow Control Mode
		Write		0 - Enable IEEE 802.3x flow control 1 - Disable IEEE 802.3x flow control
		Reset		NOTE: Valid only if auto-negotiation for flow control is disabled.

Table 30: General Purpose Control Register (GPCR)

Offset: 0x2804

Bits	Field		Type/ Reset Value	Description
12	TxEn			
	Write 0 - Disabled 1 - Enable			
		Reset	0	Ethernet port is ready to transmit.
11	RxEn	Read		Receive Enable
		Write		0 - Disabled 1 - Enable
		Reset	0 Ethernet port is ready to receive.	Ethernet port is ready to receive.
10	Reserved	Read		
		Write		
		Reset		
9	LPBK Read Loopback mode	<u>'</u>		
Write 0 - Normal mode 1 - Internal loopback mode				
		Reset	0	Tx data is looped back to the Rx lines and also transmitted to the MII interface pins.
8	PAR	Read		Partition Enable
		Write		When more than 61 collisions occur while transmitting, the port enters Partition Mode. It waits for the first good packet from the
		Reset	0	wire, and then goes back to Normal Mode. In Partition Mode it continues transmitting, but it does not receive. 0 - Normal Mode 1 - Partition Mode
7	GigSpeed	Read		GigSpeed
		Write		0 - follow the Speed bit setting 1 - 1000Mbps (only valid if Speed bit (3) is set to 1).
		Reset	1	
6	FLP	Read		Force Link Pass
		Write		1 - Force Link Pass 0 - Do NOT Force Link Pass
		Reset	1	
5	HD	Read	Duplex Mode	
		Write		0 - Half Duplex 1 - Full Duplex
		Reset	0	NOTE: Valid only, if auto-negotiation for Duplex Mode is disabled.

Table 30: General Purpose Control Register (GPCR)
Offset: 0x2804

Bits	Field		Type/ Reset Value	Description
4	FCTLRX	Read		Receive Flow Control Mode
	Write 0 - Enable IEEE 802.3x flow contr 1 - Disable IEEE 802.3x flow cont	1 - Disable IEEE 802.3x flow control		
		Reset	0	NOTE: Valid only, if auto-update for flow control is disabled.
3	Speed Read Port Speed			
		Write		0 - 10Mbps 1 - 100Mbps (and GigSpeed is set to 0)
		NOTE: Valid only, if Speed En bit is set.		
2	DPLYXen	Read		Enable Auto-Update for Duplex Mode
		Write		0 - Enable 1 - Disable
		Reset	0	
1	FCTLen	Read		Enable Auto-Update for 802.3x Flow Control
		Write		0 - Enable 1 - Disable
		Reset	1	
Writ	Read		Enable Auto-Update for Speed	
		Write		0 - Enable 1 - Disable
		Reset	0	

Table 31: Transmit Control Register (TCR)
Offset: 0x2808

Bits	Field		Type/ Reset Value	Description
15	FJ	Read	Force Jam / Flow Control	
		Write		When in half-duplex mode, the CPU uses this bit to force collisions on the Ethernet segment. When the CPU recognizes that
		Reset	0	it is going to run out of receive buffers, it can force the transmitter to send jam frames, forcing collisions on the wire. The CPU must clear the FJ bit when more resources are available in order to allow transmission on the Ethernet segment. When in full-duplex mode and if Flow Control is enabled, this bit causes the port's transmitter to send Flow Control Pause packets. The CPU should reset this bit when more resources are available.

Table 31: Transmit Control Register (TCR)

Offset: 0x2808

Bits	Field		Type/ Reset Value	Description
14	CRCD	Read		Insert CRC
	Write 0 - Enable 1 - Disable insertion of CRC in transmit pack	0 - Enable 1 - Disable insertion of CRC in transmit packets		
		Reset	0	When this bit is set, the MAC does not insert a CRC at the end of a transmit packet.
13	PADD	Read		Pad Packets
		0 - Enable 1 - Disable padding of packets of length less than 64 bytes		
		When this bit is set, the MAC does not add padding to packets		
12:10	ColTh	Read Collision Threshold		
		Write		For Fast Ethernet: Number of TX clocks to count from the beginning of a packet before a collision is counted as a late collision.
		Reset	100 (64 bytes)	The number is in 32 cycle multiples (16 bytes transmit time). For Gigabit Ethernet: The number is fixed to 512 bytes.
9:8	Reserved	Read	0	Reserved
		Write	0	
		Reset	0	
7:0	Padding	Read	00	When padding is enabled, these bits will allow to change pad-
	Pattern	Write	00	ding patterns in 'byte'.
		Reset		For short packet padding. This pattern is programmable by this register. Value in this will be used as 'one byte' repetitions in the padding. Example, if you program 'AA', required 16 bytes padding will look like 'AA AA'.

Table 32: Receive Control Register (RCR)
Offset: 0x280c

Bits	Field		Type/ Reset Value	Description
15	UnFiEn	Read		Unicast Filter Enable
		Write		0 - Disable 1 - Enable
		Reset	0	By setting this bit, the MAC will only pass packets with DA that matches either SA1 or SA2 on unicast packets. If only one address needs to be matched, the same address should be written in both SA1 and SA2.
14	MuFiEn	Read		Multicast Filter Enable
		Write		0 - Disable 1 - Enable
		Reset	0	When this bit is set, MAC passes multicast packets to the DMA which have a DA. Produces a hit with the hash mechanism. MACAH1, MACAH2, MACAH3, and MACAH4 form the Hash Register. MACAH1 represents the least significant bits of Hash Register and MACAH4 the most significant bits. Possible modes: Bit 15: Bit 14 0 0 - Promiscuous Mode 0 1 - Multicast Filtering Enabled 1 0 - Unicast Filtering Enabled 1 1 - Both Unicast and Multicast Filtering Enabled
13	CRCR	Read		Remove CRC
		Write		0 - Keep CRC 1- Remove CRC
		Reset	0	Remove CRC from receive packets. The 4-byte CRC is removed from the received packets if this bit is set.
12	PASSFC	Read		Pass Flow Control Packets
		Write		0 - Drop FC packets and do not send to FIFO 1 - Pass FC packets to FIFO
		Reset		NOTE: Only real packet is dropped, DA and SA of the FC packet are still passed in drop FC packets mode.
11:0	Reserved	Read		Reserved
		Write		
		Reset	0	

Table 33: Transmit Flow Control Register (TFCR)

Offset: 0x2810

Bits	Field		Type/ Reset Value	Description	
15:0	PauseTime	Read		Indicates the number of slot times during which the remote po	
		Write		receiving a flow-control packet from this port cannot send pacets. This field is inserted into the transmitted flow control pacets.	
		Reset	0xFFFF	ets.	

Table 34: Transmit Parameter Register (TPR)

Offset: 0x2814

Bits	Field		Type/ Reset Value	Description
15:14	JAM_Len	Read Write	lows:	
		Reset	11 (48K bit time in FE mode 96K bit times in GIG mode)	00 = 12K bit times for FE 00 = 24K bit times for GIG 01 = 24K bit times for FE 01 = 48K bit times for GIG 10 = 32K bit times for FE 10 = 64K bit times for GIG 11 = 48K bit times for FE 11 = 96K bit times for GIG These values are only True when there is no data on the FIFC
13:9	JAM_IPG	Read		bus. If there is data, this data will be sent. Jam Inter Packet Gap
		Write		For Fast Ethernet: 13:9 These bits determine the JAM IPG. The step is four bit times.
		Reset	01011 (44 bit times in FE mode 48 bit times in GIG mode)	The JAM IPG varies between 8-bit times and 124. For GIG: 11:9 = 011 010 - 32 bit times 011 - 48 bit times (default mode) 100 - 64 bit times 101 - 80 bit times 110 - 96 bit times 111 - 112 bit times NOTE: This value should be between above specified values only.

Table 34: Transmit Parameter Register (TPR)
Offset: 0x2814

Bits	Field		Type/ Reset Value	Description
8:4	IPGJAM2Data	Read		Inter Packet Jam Data
		Write	11100 (112 bit times for FE) 64 bit times for GIG	For Fast Ethernet: 8:4 These bits determine the IPG JAM to Data. The step is four bit times. The value varies between 8 bit times and 124. For GIG: 6:4 = 100 010 - 32 bit times 011 - 48 bit times 100 - 64 bit times (default mode) 101 - 80 bit times 110 - 96 bit times 111 - 112 bit times NOTE: This value should be between above specified values
3:0	Back-off Limit	Read Write		only. These register bits set the back-off limit. These values are only valid if Limit4 in the SMR register is set.
		Reset	0100	

Table 35: Serial Mode Register (SMR)
Offset: 0x2818

Bits	Field		Type/ Reset Value	Description
15:14	Reserved	Read		Reserved
		Write		
		Reset	0	
13:11	Data Blinder	Read		The number of nibbles from the beginning of the IPG, in which
		Write		the IPG counter is restarted when detecting a carrier activity. Following this value, the port enters the Data Blinder zone and
		Reset	00100	does not reset the IPG counter. This ensures fair access to the medium. Value should be written in Hex format. The step is 4-bit time.
				NOTE: These bits should only be changed at the start up or initialization and port is disabled.

Table 35: Serial Mode Register (SMR)

Offset: 0x2818

Bits	Field		Type/ Reset Value	Description
10	Limit4	Read		Limit4
		Write		The number of consecutive packet collisions that occurs before the collision counter is reset.
		Reset	0	0 - The port resets its collision counter after 16 consecutive retransmit trials and restarts the Back off algorithm. 1- The port resets its collision counter and restarts the back algorithm after 4 consecutive transmit trials.
9:8		Read		VLAN Enabled, Maximum Frame Length
	MFL	Write		00 - Max. Frame Length = 1518 10 - Max. Frame Length = 1522
		Reset	00	01 - Max. Frame Length = 9018 11 - Max. Frame Length = 9022
7:5	Reserved	Read		Reserved
		Write		
		Reset	0	
4:0	IPGData	Read		Inter Packet Gap Data
		Write		For Fast Ethernet: 4:0 Inter-Packet Gap (IPG): The step is 4 bit times. The value may
		Reset	11000 (96 bit time)	vary between 48 bit times to 124. NOTE: These bits can only be changed when the Ethernet port is disabled. For GIG: 2:0

Table 36: Source Address Low (SAL1)

Offset: 0x281c

Bits	Field		Type/ Reset Value	Description
15:0	SA1 [15:0]	Read		Source Address
		Write		The least significant bits of the source address for the port. This address is used for Flow Control.
		Reset	0	

Table 37: Source Address Middle (SAM1)

Offset: 0x2820

Bits	Field		Type/ Reset Value	Description
15:0	SA1 [31:16]	Read		Source Address
		Write		The middle bits of the source address for the port. This address is used for Flow Control.
		Reset	0	

Table 38: Source Address High (SA1H)

Offset: 0x2824

Bits	Field		Type/ Reset Value	Description
15:0	SA1 [47:32]	Read		Source Address
		Write		The most significant 16 bits of the source address for the port. This address is used for Flow Control.
		Reset	0	

Table 39: Source Address Low (SAL2)

Offset: 0x2828

Bits	Field		Type/ Reset Value	Description
15:0	SA2 [15:0]	Read		Source Address
		Write		Used for VLAN and others. The least significant bits of the source address for the port.
		Reset	0	

Table 40: Source Address Middle (SAM2)

Offset: 0x282c

Bits	Field		Type/ Reset Value	Description
15:0	SA2 [31:16]	Read		Source Address
		Write		Used for VLAN and others. The middle bits of the source address for the port.
		Reset	0	·

Table 41: Source Address High (SAH2)

Offset: 0x2830

Bits	Field		Type/ Reset Value	Description
15:0	SA 2[47:32]	Read		Source Address Used for VLAN and others. The most significant 16 bits of the source address for the port.
		Write		
		Reset	0	

Table 42: Multicast Address Hash Register 1 (MCAH1)

Offset: 0x2834

Bits	Field		Type/ Reset Value	Description
15:0	MCAH1[15:0]	Read		Multicast Address Hash Register 1
		Write		
		Reset	0	

Table 43: Multicast Address Hash Register 2 (MCAH2)

Offset: 0x2838

Bits	Field		Type/ Reset Value	Description
15:0	MCAH2[15:0]	Read		Multicast Address Hash Register 2
		Write		
		Reset	0	

Doc. No. MV-S102130-00, Rev. --

Table 44: Multicast Address Hash Register 3 (MCAH3)

Offset: 0x283c

Bits	Field		Type/ Reset Value	Description
15:0	MCAH3[15:0]	Read		Multicast Address Hash Register 3
		Write		
		Reset	0	

Table 45: Multicast Address Hash Register 4 (MCAH4)

Offset: 0x2840

Bits	Field		Type/ Reset Value	Description
15:0	MCAH4[15:0]	Read		Multicast Address Hash Register 4
		Write		
		Reset	0	

Table 46: Transmit Interrupt Register (TIR)
Offset: 0x2844

Bits Field Type/ Description Reset Value 15:0 TIR[15:0] Read Transmit Overflow Interrupt Register 0x70 to 0x8f of MIB counters. Write Reset 0 **Transmit Interrupt Register Definitions** Late Read The number of times a collision is detected later than 512-times 15 Yes into the transmission of a packet. Write No Reset 14 Collisions Read Yes The number of collisions experienced by a port during packet transmission. Write No Reset

Table 46: Transmit Interrupt Register (TIR)

Offset: 0x2844

Bits	Field		Type/ Reset Value	Description
13	Spare	Read	Yes	
		Write	No	
		Reset		
12	OutMaxOctets	Read	Yes	The number of packets transmitted that were between 1519 a MAX_LEN bytes in length inclusive.
		Write	No	
		Reset		
11	Out1518Octets	Read	Yes	The number of packets transmitted that were between 1024 and
		Write	No	1518 bytes in length inclusive.
		Reset		
10	0 Out1023Octets	Read	Yes	The number of packets transmitted that were between 512 and
		Write	No	1023 bytes in length inclusive.
		Reset		
9	Out511Octets	Read	Yes	The number of packets transmitted that were between 256 and
		Write	No	511 bytes in length inclusive.
		Reset		
8	Out255Octets	Read	Yes	The number of packets transmitted that were between 128 and
		Write	No	255 bytes in length inclusive.
		Reset		
7	Out127Octets	Read	Yes	The number of packets transmitted that were between 65 and
		Write	No	127 bytes in length inclusive.
		Reset		
6	Out64octets	Read	Yes	The number of packets transmitted that were 64 bytes in length.
		Write	No	
		Reset		
5:4	OutOctets	Read	Yes	The number of bytes of data transmitted, including bad packets.
		Write	No	The count includes the FCS but not the preamble
		Reset		

Table 46: Transmit Interrupt Register (TIR)
Offset: 0x2844

Bits	Field		Type/ Reset Value	Description
3	OutMulticasts	Read	Yes	The number of Multicast packets transmitted by the port.
		Write	No	
		Reset		
2	OutPause	Read	Yes	The number of Pause packets transmitted by the port
		Write	No	
		Reset		
1	OutBroadcasts	Read	Yes	The number of Broadcast packets transmitted by the port.
		Write	No	
		Reset		
0	OutUnicasts	Read	Yes	The number of unicast packets transmitted by the port.
		Write	No	
		Reset		

Table 47: Receive Interrupt Register (RIR)
Offset: 0x2848

Bits	Field		Type/ Reset Value	Description
15:0	RIR[15:0]	Read		Receive Overflow Interrupt Register
		Write		0x40 to 0x5f of MIB counters
		Reset	0	
Recei	ve Interrupt Re	gister Defi	nitions	
15	In511Octets	Read	Yes	The number of packets (including bad packets) received that
		Write	No	were between 256 and 511 bytes in length inclusive.
		Reset		
14	In255Octets	Read	Yes	The number of packets (including bad packets) received that
		Write	No	were between 128 and 255 bytes in length inclusive.
		Reset		

Document Classification: Proprietary Information

Table 47: Receive Interrupt Register (RIR)

Offset: 0x2848

	Offset: 0x2	T		
Bits	Field		Type/ Reset Value	Description
13	In127Octets	Read	Yes	The number of packets (including bad packets) received that
		Write	No	were between 65 and 127 bytes in length inclusive.
		Reset		
12	In64Octets	Read	Yes	The number of packets (including bad packets) received the were 64 bytes in length.
		Write	No	
		Reset		
11	Fragments	Read	Yes	The number of packets received by the port that are less than
		Write	No	64 bytes in long and have FCS error.
		Reset		
10	Undersize Re	Read	Yes	The number of good packets received by the port that are less
		Write	No	than 64 bytes long.
		Reset		
9:8	:8 InBadOctets	Read	Yes	The number of bytes of data received in bad packets. The
		Write	No	count includes the FCS but not the preamble.
		Reset		
7:6	InGoodOctets	Read	Yes	The number of good bytes of data received. The count
		Write	No	includes the FCS but not the preamble.
		Reset		
5	Spare	Read	Yes	
		Write	No	
		Reset		
4	InFCSErr	Read	Yes	The number of packets that have a bad FCS.
		Write	No	
		Reset		
3	InMulticasts	Read	Yes	The number of good Multicast packets received by the port.
		Write	No	
		Reset		

Table 47: Receive Interrupt Register (RIR)

Offset: 0x2848

Bits	Field		Type/ Reset Value	Description
2	InPause	Read	Yes	The number of PAUSE packets received by the port.
		Write	No	
		Reset		
1	InBroadcasts	Read	Yes	The number of good Broadcast packets received by the port.
		Write	No	
		Reset		
0	InUnicasts	Read	Yes	The number of good Unicast packets received by the port.
		Write	No	
		Reset		

Table 48: Transmit and Receive Interrupt Register (TIR_RIR)

	Offset: 0x28	34c		
Bits	Field		Type/ Reset Value	Description
15:0	TIR_RIR[15:0]	Read		7:0 - Receive Overflow Interrupt Register MSBs
		Write		0x60 to 0x6f of MIB counters 11:8 - Transmit Overflow Interrupt Register MSBs
		Reset	0	0x90 to 0x97 of MIB counters
Trans	mit and Receiv	e Interrup	ot Register	Definitions
15:12	Reserved	Read		
		Write		
		Reset		
11	Underflow	Read	Yes	The number of Multicast packets transmitted by the port. The
		Write	No	number of times a underflow condition occurs in the transmit FIFO.
		Reset		
10	Single	Read	Yes	The number of successfully transmitted packets that experi-
		Write	No	enced exactly one collision.
		Reset		
9	Multiple	Read	Yes	The number of Broadcast packets transmitted by the port.
		Write	No	The number of successfully transmitted packets that experienced more than one collision.
		Reset		
8	Excessive	Read	Yes	The number of packets that are not transmitted from a port
		Write	No	because the packet experienced 16 transmission attempts.
		Reset		
7	Spare	Read	Yes	
		Write	No	
		Reset		
6	Overflow	Read	Yes	The number of times the overflow condition occurs.
		Write	No	
		Reset		
5	Spare	Read	Yes	
		Write	No	
		D		

Reset

Table 48: Transmit and Receive Interrupt Register (TIR_RIR)
Offset: 0x284c

Bits	Field		Type/ Reset Value	Description
4	Jabber	Read	Yes	The number of packets received that were longer than
		Write	No	MAX_LEN bytes, and has a FCS error.
		Reset		
3	OverSize	Read	Yes	The number of packets received that are longer than MAX_LEN
		Write	No	bytes that were otherwise well formed.
		Reset		
2	2 InMaxOctets	Read	Yes	The number of packets (including bad packets) received that
		Write	No	were between 1519 and MAX_LEN bytes in length inclusive.
		Reset		
1	In1518Octets	Read	Yes	The number of packets (including bad packets) received that
		Write	No	were between 1024 and 1518 bytes in length inclusive.
		Reset		
0	In1023Octets	Read	Yes	The number of packets (including bad packets) received that
		Write	No	were between 512 and 1023 bytes in length inclusive.
		Reset		

Table 49: Transmit Interrupt Mask Register (TIMR)

Offset: 0x2850

Bits	Field		Type/ Reset Value	Description
15:0	TIMR[15:0]	Read		Transmit Overflow Interrupt Register
		Write		0 - pass 1 - mask
		Reset	0	

Table 50: Receive Interrupt Mask Register (RIMR)

Offset: 0x2854

Bits	Field		Type/ Reset Value	Description
15:0	RIMR[15:0]	Read		Receive Overflow Interrupt Register
		Write		0 - pass 1 - mask
		Reset	0	

Table 51: Transmit and Receive Interrupt Mask Register (TIMR_RIMR)
Offset: 0x2858

Bits	Field		Type/ Reset Value	Description			
15:0	15:0 TIMR_RIMR Read			7:0 - Receive Overflow Interrupt Register MSBs			
	[15:0]	11:8 Transmit Overflow MSBs 0 - pass					
		Reset		1 - mask			

Table 52: SMI Control Register (SMICR)
Offset: 0x2880

Bits	Field		Type/ Reset Value	Description
15:11	PhyAd	Read		PHY Device Address
		Write		
		Reset	0	
10:6	RegAd	Read		PHY Device Register Address
		Write		
		Reset	0	
5	OpCode	Read		OpCode
		Write		0 – Write 1 – Read
		Reset	0	
4	ReadValid	Read		Read Valid
		Write		Indicates that the Read operation has been completed for the addressed (RegAd) register, and the data is valid in the SMI
		Reset	0	Data Register. Read only.
3	Busy	Read		Busy
		Write		0 - SMI interface is available 1 - Indicates that an operation is in progress and that CPU must
		Reset	0	not write to the SMI registers at this time. Read only.
2:0	Reserved	Read		
		Write		
		Reset	0	

Table 53: SMI Data Register (SMIDR)

Offset: 0x2884

Bits	Field		Type/ Reset Value	Description				
15:0	Data	Read		SMI Read Operation				
		Write	(1) Write to the Sivil Control Register (Sivil CR) with Opcode					
		Reset	0	and PhyAd, RegAd pointing to the PHY register to be read. (2) Read from the SMI Data Register (SMIDR). This read should be performed when the Read Valid bit in SMICR is set. The data remains undefined as long as Read Valid is 0. SMI WRITE operation Two transactions are required: (1) Write the register data to be written into the PHY register in the SMI Data Register (SMIDR). (2) Write to the SMI Control Register (SMICR) with OpCode = 0 and PhyAd, RegAd pointing to the PHY register to be written to.				

Table 54: PHY Address Register (PAR)

Offset: 0x2888

Bits	Field		Type/ Reset Value	Description			
15:6	Reserved	Read					
		Write					
		Reset	0				
5	MIBclrMode	Read		MIB Counters Clear Mode			
		Write		Setting this bit causes the counters to reset when the CPU reads a counter. In order to reset all MIB counters, the CPU			
		Reset	0	should set this bit and read all the counters individually. The reset is only performed when the lower 16 bits of the counters are read and if MIBcIrMode is set.			
4	LoadTstCnt	Read		Load a count of FFFF_FFF0 into the RMON counters when it is			
		Write		read. This is used only in test mode.			
		Reset	000				
3:0	Reserved	Read					
		Write					
		Reset					

MIB Counters

Address in Control Register File	Field	Bits	Description			
0x2900	InUnicasts	15:0	The number of good Unicast packets received by the			
0x2904	InUnicasts	31:16	port.			
0x2908	InBroadcasts	15:0	The number of good broadcast packets received by the			
0x290c	InBroadcasts	31:16	port.			
0x2910	In Pause	15:0	The number of Pause packets received by the port.			
0x2914	InPause	31:16				
0x2918	InMulticasts	15:0	The number of good Multicast packets received by the port. The number of packets that have a bad FCS.			
0x291c	InMulticasts	31:16				
0x2920	InFCSErr	15:0				
0x2924	InFCSErr	31:16				
0x2928	Spare					
0x292c	Spare					
0x2930	InGoodOctets	15:0	The number of good bytes of data received. The count includes the FCS but not the preamble.			
0x2934	InGoodOctets	31:16	includes the FCS but not the preamble.			
0x2938	InGoodOctets	47:32				
0x293c	InGoodOctets	63:48				
0x2940	InBadOctets	15:0	The number of bytes of data received in bad packets. The count includes the FCS but not the preamble.			
0x2944	InBadOctets	31:16	Count includes the POS but not the preamble.			
0x2948	InBadOctets	47:32				
0x294c	InBadOctets	63:48				
0x2950	Undersize	15:0	The number of good packets received by the port are less			
0x2954	Undersize	31:16	than 64 bytes long.			
0x2958	Fragments	15:0	The number of packets received by the port that are less			
0x295c	Fragments	31:16	than 64 bytes long and have a FCS error.			

Address in	Field	Bits	Description				
Control Register File							
0x2960	In64Octets	15:0	The number of packets (including bad packets) received				
0x2964	In64Octets	31:16	that were 64 bytes in length.				
0x2968	In127Octets	15:0	The number of packets (including bad packets) received				
0x296c	In127Octets	31:16	that were between 65 and 127 bytes in length.				
0x2970	In255Octets	15:0	The number of packets (including bad packets) received that were between 128 and 255 bytes in length.				
0x2974	In255Octets	31:16					
0x2978	In511Octets	15:0	The number of packets (including bad packets) received that were between 256 and 511 bytes in length.				
0x297c	In511Octets	31:16					
0x2980	In1023Octets	15:0	The number of packets (including bad packets) received				
0x2984	In1023Octets	31:16	that were between 512 and 1023 bytes in length.				
0x2988	In1518Octets	15:0	The number of packets (including bad packets) received				
0x298c	In 1518Octets	31:16	that were between 1024 and 1518 bytes in length.				
0x2990	InMaxOctets	15:0	The number of packets (including bad packets) received				
0x2994	InMaxOctets	31:16	that were between 1519 and MAX_LEN bytes in length.				
0x2998	OverSize	15:0	The number of packets received that are longer than				
0x299c	Oversize	31:16	MAX_LEN bytes and were well formed.				
0x29a0	Jabber	15:0	The number of packets received that were longer than MAX LEN and had an FCS error.				
0x29a4	Jabber	31:16	MAX_LEN and had an FCS error.				
0x29a8	Spare						
0x29ac	Spare						
0x29b0	Overflow	15:0	The number of times the overflow condition occurs.				
0x29b4	Overflow	31:16					
0x29b8	Spare						
0x29bc	Spare						

Address in Control Register File	Field	Bits	Description			
0x29c0	OutUnicasts	15:0	The number of Unicast packets transmitted by the port.			
0x29c4	OutUnicasts	31:16				
0x29c8	OutBroadcasts	15:0	The number of Broadcast packets transmitted by the port.			
0x29cc	OutBroadcasts	31:16				
0x29d0	OutPause	15:0	The number of Pause Packets transmitted by the port.			
0x29d4	OutPause	31:16				
0x29d8	OutMulticasts	15:0	The number of good Multicast packets transmitted by the port.			
0x29dc	OutMulticasts	31:16				
0x29e0	OutOctets	15:0	The number of bytes of data transmitted, including bad			
0x29e4	OutOctets	31:16	packets. The count includes FCS but not the preamble.			
0x29e8	OutOctets	47:32				
0x29ec	OutOctets	63:48				
0x29f0	Out64Octets	15:0	The number of packets (including bad packets) transmit-			
0x29f4	Out64Octets	31:16	ted that were 64 bytes in length.			
0x29f8	Out127Octets	15:0	The number of packets (including bad packets) transmit-			
0x29fc	Out127Octets	31:16	ted that were between 65 and 127 bytes in length.			
0x2a00	Out255Octets	15:0	The number of packets (including bad packets) transmit-			
0x2a04	Out255Octets	31:16	ted that were between 128 and 255 bytes in length.			
0x2a08	Out511Octets	15:0	The number of packets (including bad packets) transmit-			
0x2a0c	Out511Octets	31:16	ted that were between 256 and 511 bytes in length.			
0x2a10	Out1023Octets	15:0	The number of packets (including bad packets) transmit-			
0x2a14	Out1023Octets	31:16	ted that were between 512 and 1023 bytes in length.			
0x2a18	Out1518Octets	15:0	The number of packets (including bad packets) transmitted that were between 1024 and 1518 bytes in length.			
0x2a1c	Out 1518Octets	31:16	ted that were between 1024 and 1916 bytes in leftgth.			

Address in Control Register File	Field	Bits	Description		
0x2a20	OutMaxOctets	15:0	The number of packets (including bad packets) transmitted that were between 1519 and MAX_LEN bytes in		
0x2a24	OutMaxOctets	31:16	length.		
0x2a28	Spare				
0x2a2c	Spare				
0x2a30	Collisions	15:0	The number of collisions experienced by a port during packet transmission.		
0x2a34	Collisions	31:16	packet transmission.		
0x2a38	Late	15:0	The number of times that a collision is detected later than		
0x2a3c	Late	31:16	512 bit-times into the transmission of a packet.		
0x2a40	Excessive	15:0	The number of packets that are not transmitted from a port because the packet experienced 16 transmission		
0x2a44	Excessive	31:16	attempts.		
0x2a48	Multiple	15:0	The number of successfully transmitted packets that experienced more than one collision.		
0x2a4c	Multiple	31:16	experienced more than one comsion.		
0x2a50	Single	15:0	The number of successfully transmitted packets that		
0x2a54	Single	31:16	experienced exactly one collision.		
0x2a58	Underflow	15:0	The number of times an underflow condition occurs in the transmit FIFO.		
0x2a5c	Underflow	31:16	transmit in O.		

Section 4. Electrical Specifications

4.1 Absolute Maximum Ratings

Stresses above those listed in Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

Symbol	Parameter	Min	Тур	Max	Units
V _{DD(3.3)}	Power Supply Voltage on A_{VDDH} with respect to V_{SS}	-0.5		+3.6	V
V _{DD(2.5)}	Power Supply Voltage on V _{DDO_TTL} with respect to VSS	-0.5		+3.6 or V _{DD(3.3)} +0.5 ¹ whichever is less	V
V _{DD(1.2)}	Power Supply Voltage on V _{DD} with respect to V _{SS}	-0.5		+3.6 or V _{DD(2.5)} +0.5 ² whichever is less	V
V _{PIN}	Voltage applied to any input pin with respect to V _{SS}	-0.5		+3.6 or V _{DDO} +0.5 ³ whichever is less	V
T _{STORAGE}	Storage temperature	-55		+125 ⁴	°C

^{1.} VDD(2.5) must never be more than 0.5V greater than VDD(3.3) or damage will result. This implies that power must be applied to VDD(3.3) before or at the same time as VDD(2.5).

^{2.} VDD(1.2) must never be more than 0.5V greater than VDD(2.5) or damage will result. This implies that power must be applied to VDD(2.5) before or at the same time as VDD(1.2).

^{3.} VPIN must never be more than 0.5V greater than VDDO or damage will result.

^{4. 125°}C is the re-bake temperature. For extended storage time greater than 24 hours, +85°C should be the maximum.

Recommended Operating Conditions 4.2

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{DD(3.3)}	3.3V power supply	For pins V _{DDO_TTL}	3.135	3.3	3.465	V
V _{DD(2.5)}	2.5V power supply	For pins A _{VDDL}	2.375	2.5	2.625	V
V _{DD(1.2)}	1.2V power supply	For pins V _{DD}	1.140	1.2	1.260	V
T _A	Ambient operating temperature		0		70	°C
T _J	Maximum junction temperature				125 ¹	°C
RSET	Internal bias reference	Constant voltage reference. External 4.99 kΩ 1% resistor connection to VSS.	2465	2490	2515	Ω

^{1.} Refer to white paper on TJ Thermal Calculations for more Information.

Page 240

4.3 Package Thermal Information

4.3.1 Thermal Conditions for 64-pin QFN Package

Symbol	Parameter	Condition	Min	Тур	Max	Units
θ_{JA}	Thermal resistance ¹ - junction to ambient of the	JEDEC 3 in. x 4.5 in. 4- layer PCB with no air flow		23.30		°C/W
	88E8053 device 64-Pin QFN package θ _{JA} = (T _J - T _A)/ P P = Total Power Dissipation Thermal characteristic	JEDEC 3 in. x 4.5 in. 4- layer PCB with 1 meter/sec air flow		20.60		°C/W
		JEDEC 3 in. x 4.5 in. 4- layer PCB with 2 meter/sec air flow		19.60		°C/W
		JEDEC 3 in. x 4.5 in. 4- layer PCB with 3 meter/sec air flow		19.00		°C/W
ΨЈТ	Thermal characteristic parameter - junction to top center of the 88E8053 device 64-Pin QFN package $\psi_{JT} = (T_J - T_{TOP})/P.$ Ttop = Temperature on the top center of the package	JEDEC 3 in. x 4.5 in. 4- layer PCB with no air flow		0.17		°C/W
		JEDEC 3 in. x 4.5 in. 4- layer PCB with 1 meter/sec air flow		0.40		°C/W
		JEDEC 3 in. x 4.5 in. 4- layer PCB with 2 meter/sec air flow		0.50		°C/W
		JEDEC 3 in. x 4.5 in. 4- layer PCB with 3 meter/sec air flow		0.58		°C/W
θ _{JC}	Thermal resistance ¹ - junction to case of the 88E8053 device 64-Pin QFN package	JEDEC with no air flow		9.30		°C/W
	$\theta_{JC} = (T_J - T_C)/P_{Top}$ $P_{Top} = Power Dissipation$ from the top of the package					
θ_{JB}	Thermal resistance ¹ - junction to board of the 88E8053 device 64-Pin QFN package	JEDEC with no air flow		15.50		°C/W
	$\theta_{JB} = (T_J - T_B)/P_{bottom}$ $P_{bottom} = power dissipation$ from the bottom of the package to the PCB surface.					

^{1.} Refer to white paper on TJ Thermal Calculations for more information.

4.4 DC Electrical Characteristics

4.4.1 Current Consumption AVDDL

(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

Symbol	Parameter	Pins	Condition	Min	Тур	Max	Units
I _{AVDDL}	2.5V Power to	AVDDL	No Link		82		mA
	analog core - copper		1000 Mbps Traffic		218		mA
37773		100 Mbps Traffic		126		mA	
		10 Mbps Traffic		108		mA	
			LOM_DISABLE without Switch		4		mA
			D3 Cold with PME dis- abled without Switch		12		mA
			D3 Cold without PME dis- abled without switch		27		mA

4.4.2 Current Consumption VDD

Symbol	Parameter	Pins	Condition	Min	Тур	Max	Units
I _{VDD}	Core power	VDD	No Link		171		mA
	1		1000 Mbps Traffic		426		mA
			100 Mbps Traffic		203		mA
		10 Mbps Traffic		179		mA	
			LOM_DISABLE without Switch		13		mA
			D3 Cold with PME dis- abled without Switch		29		mA
		D3 Cold without PME disabled without switch		130		mA	

4.4.3 Current Consumption VDDO_TTL

Symbol	Parameter	Pins	Condition	Min	Тур	Max	Units
I _{VDDO_TTL}	PCI I/O power	VDDO_TTL	No Link		4		mA
	(3.3V)		1000 Mbps Traffic		4		mA
			100 Mbps Traffic		4		mA
			10 Mbps Traffic		4		mA
			LOM_DISABLE without Switch		3		mA
			D3 Cold with PME disabled without Switch		3		mA
			D3 Cold without PME disabled without switch		3		mA

4.4.4 Digital Operating Conditions

Symbol	Parameter	Pins	Condition	Min	Тур	Max	Units
V _{IH}	High level input voltage	All pins		2.0		V _{DD} +0.5	V
		XTALI					
V _{IL}	Low level	All pins		-0.5		0.8	V
	input voltage	XTALI					
011	High level	LED pins ¹		2.4			V
	output voltage	XTALO					V
		All others (except INTAn)		2.4			V
V _{OL}	Low level output	LED pins				0.4	V
	voltage	XTALO					V
		INTAn pin					V
		All others				0.4	V
I _{ILK}	Input leakage current	With pull-up resistor	0 <v<sub>IN<v<sub>DD</v<sub></v<sub>				μΑ
		With pull-down resistor	0 <v<sub>IN<v<sub>DD</v<sub></v<sub>				μА
		All others	0 <v<sub>IN<v<sub>DD</v<sub></v<sub>				μΑ
C _{IN}	Input capacitance	All pins				5	pF

^{1.} The LED pins are as follows: LED_ACTn, LED_LINK10/100n, LED_LINK1000n, LED_LINKn.

Table 55: 88E8053 Internal Resistor Description

Pin #	Pin Name	Resistor	Pin #	Pin Name	Resistor
38	VPD_CLK	Internal pull-up	37	SPI_CLK	Internal pull-up
41	VPD_DATA	Internal pull-up	36	SPI_CS	Internal pull-up
34	SPI_DO	Internal pull-up	46	TESTMODE	Default pull-down
35	SPI_DI	Internal pull-up			

4.4.5 IEEE DC Transceiver Parameters

IEEE tests are typically based on templates and cannot simply be specified by a number. For an exact description of the template and the test conditions, refer to the IEEE specifications:

- -10BASE-T IEEE 802.3 Clause 14
- -100BASE-TX ANSI X3.263-1995

Symbol	Parameter	Pins	Condition	Min	Тур	Max	Units
V _{ODIFF}	Absolute peak	MDI[1:0]	10BASE-T no cable	2.2	2.5	2.8	V
	differential output voltage	MDI[1:0]	10BASE-T cable model	585 ¹			mV
	31,111	MDI[1:0]	100BASE-TX mode	0.950	1.0	1.050	V
		MDI[3:0]	1000BASE-T ²	0.67	0.75	0.82	V
	Overshoot ²	MDI[1:0]	100BASE-TX mode	0		5%	V
	Amplitude Symmetry (positive/ negative)	MDI[1:0]	100BASE-TX mode	0.98x		1.02x	V+/V-
V _{IDIFF}	Peak Differential Input Voltage	MDI[1:0]	10BASE-T mode	585 ³			mV
	Signal Detect Assertion	MDI[1:0]	100BASE-TX mode	1000	460 ⁴		mV peak- peak
	Signal Detect De-assertion	MDI[1:0]	100BASE-TX mode	200	360 ⁵		mV peak- peak

^{1.} IEEE 802.3 Clause 14, Figure 14.9 shows the template for the "far end" wave form. This template allows as little as 495 mV peak differential voltage at the far end receiver.

- 2. IEEE 802.3ab Figure 40 -19 points A&B.
- 3. The input test is actually a template test; IEEE 802.3 Clause 14, Figure 14.17 shows the template for the receive wave form.
- 4. The ANSI TP-PMD specification requires that any received signal with peak-to-peak differential amplitude greater than 1000 mV should turn on signal detect (internal signal in 100BASE-TX mode). The 88E8053 will accept signals typically with 460 mV peak-to-peak differential amplitude.
- 5. The ANSI TP-PMD specification requires that any received signal with peak-to-peak differential amplitude less than 200 mV should de-assert signal detect (internal signal in 100BASE-TX mode). The 88E8053 will reject signals typically with peak-to-peak differential amplitude less than 360 mV.

4.5 AC Timing Reference Values

Symbol	Parameter	Pins	Min	Тур	Max	Units
V _{IH} (Min.)	Input high voltage reference		1.9			V
V _{IL} (Max.)	Input low voltage reference				0.7	V
V _{OH} (Min.)	Output high voltage reference		1.9			V
V _{OL} (Max.)	Output low voltage reference				0.7	V

Page 246

4.6 AC Electrical Specifications

4.6.1 Reset Timing

Symbol	Parameter	Condition	Min	Тур	Max	Units
T1	100 ms from PCI-Express Spec.					
T2	1ms < T2 < 12 ms					
T3	150 ms					
T4	5 ms					
T5	150 ms					

Figure 15: Timing Requirements from BIOS (LOM_DISABLE starts with low)

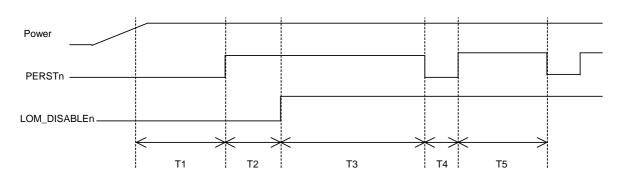
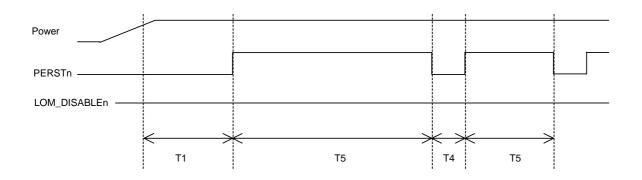



Figure 16: Timing Requirements from BIOS (LOM_DISABLE starts with high)

4.6.2 Device Wakeup Timing

(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

Symbol	Parameter	Condition	Min	Тур	Max	Units
T1	PERSTn from LOM_DISABLEn			150		ms
T2	PERSTn Timing			5		ms

Figure 17: Device Enable from LOM Disable State

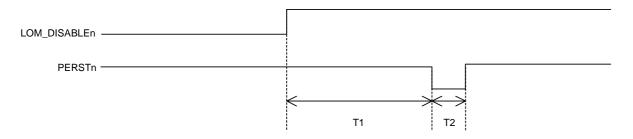
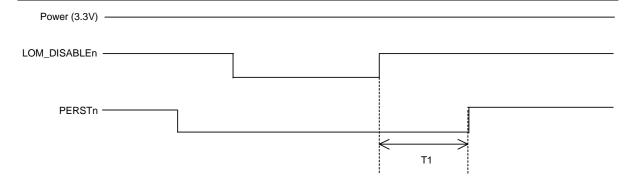
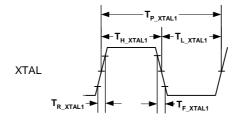



Figure 18: Device Wakeup from Power Management State (D3 Cold)



Page 248

4.6.3 Clock Timing

Symbol	Parameter	Condition	Min	Тур	Max	Units
T _{P_XTAL}	XTAL Period	±50 ppm	40	40	40	ns
T _{H_XTAL}	XTAL High time		13	20	27	ns
T _{L_XTAL}	XTAL Low time		13	20	27	ns
T _{R_XTAL}	XTAL Rise	10% to 90%	-	-	3.0	ns
T _{F_XTAL}	XTAL Fall	90% to 10%	-	-	3.0	ns

Figure 19: Clock Timing

4.6.4 PCI Express Timing

4.6.4.1 Differential Transmitter (TX) Output Specifications

(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

Symbol	Parameter	Min	Тур	Max	Units
UI	Unit Interval Each UI is 400 ps ±300 ppm. UI does not account for SSC dictated variations.	399.88	400	400.12	ps
V _{TX_DIFFp-p}	Differential Peak to Peak Output Voltage V _{TX_DIFFp-p} =2*IV _{TX-D+} - V _{TX-D-} I	0.800		1.2	V
V _{TX_DE_RATIO}	De-Emphasized Differential Output Voltage (Ratio)	-3.0	-3.5	-4.0	dB
T _{TX-EYE}	Minimum TX Eye Width	0.70			UI
T _{TX-EYE-MEDIAN-} to-MAX-JITTER	Maximum time between the jitter median and maximum deviation from the median			0.15	UI
T _{TX-RISE} , T _{TX-}	D+/D- TX Output Rise/Fall Time	0.125			UI
V _{TX-CM-ACp}	RMS AC Peak Common MOde Output Voltage			20	mV
V _{TX-CH-DC-} ACTIVE-IDLE- DELTA	Absolute Delta Common Mode Voltage During L0 and Electrical Idle	0		100	mV
V _{TX-CM-DC-LINE} - DELTA	Absolute Delta of DC Common Mode Voltage between D+ and D-	0		25	mV
V _{TX-IDLE-DIFFp}	Electrical Idle Differential Peak Output Voltage	0		20	mV
V _{TX-RCV-DETECT}	The amount of voltage change allowed during Receiver Detection			600	mV
V _{TX-DC-CM}	The TX DC Common Mode Voltage	0		3.6	V
I _{TX-SHORT}	TX Short Circuit Current Limit			90	mA
T _{TX-IDLE-MIN}	Minimum time spent in Electrical Idle	50			UI
T _{TX-IDLE-SET-TO-} IDLE	Maximum time to transition to a valid Electrical Idle after sending an Electrical Idle ordered set			20	UI
T _{TX-IDLE-TO-TO-} DIFF-DATA	Maximum time to transition to valid TX specifications after leaving an Electrical Idle condition			20	UI
RL _{TX-DIFF}	Differential Return Loss	12			dB
RL _{TX-CM}	Common Mode Return Loss	6			dB
Z _{TX-DIFF-DC}	DC Differential TX Impedance	80	100	120	Ω
Z _{TX-DC}	Transmitter DC Impedance	40			Ω
C _{TX}	AC Coupling Capacitor	75		200	nF
T _{crosslink}	Crosslink Random Timeout	0		1	ms

Doc. No. MV-S102130-00, Rev. --

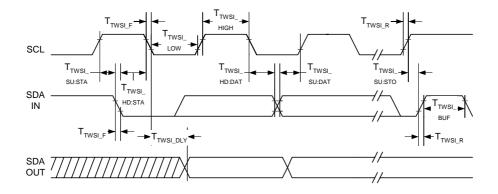
Page 250

Document Classification: Proprietary Information

April 20, 2004, Advanced

4.6.4.2 Differential Receiver (RX) Output Specifications

Symbol	Parameter	Min	Тур	Max	Units
UI	Unit Interval	399.88	400	400.12	ps
V _{TX_DIFFp-p}	Differential Peak to Peak Output Voltage V _{TX_DIFFp-p} =2*IV _{TX-D+} - V _{TX-D-} I	0.175		1.2	V
T _{RX-EYE}	Minimum RX Eye Width	0.4			UI
T _{RX-EYE-MEDIAN-} to-MAX-JITTER	Maximum time between the jitter median and maximum deviation from the median			0.3	UI
V _{RX-CM-ACp}	AC Peak Common MOde Input Voltage			150	mV
RL _{RX-DIFF}	Differential Return Loss	15			dB
RL _{RX-CM}	TCommon Mode Return Loss	0		3.6	dB
Z _{RX-DIFF-DC}	DC Differential Input Impedance	80	100	120	Ω
Z _{RX-DC}	DC Input Impedance	40	50	60	Ω
Z _{RX-HIGH-IMP-DC}	Powered Down DC Input Impedance	200 k			Ω
V _{RX-IDLE-DET-}	Electrical Idle Detect Threshold	65		175	mV
T _{RX-IDLE-DET-} DIFF-ENTERTIME	Unexpected Electrical Idle Enter Detect Threshold Integration Time			10	ms
L _{RX-SKEW}	Total Skew			20	ns



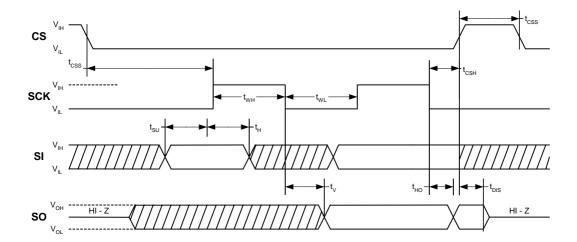
4.6.5 Two-Wire Serial Interface (TWSI) Timing

(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

Symbol	Parameter	Condition	Min	Тур	Max	Units
F _{TWSI_SCL} SCL Clock Freq	SCL Clock Frequency	100 kHz			100	kHz
		400 kHz			400	
T _{TWSI_NS} Noise Suppression Time a SCL, SDA Inputs	Noise Suppression Time at	100 kHz			80	ns
	SCL, SDA Inputs	400 kHz			80	
T _{TWSI_R}	SDA Rise time	100 kHz			1000	ns
		400 kHz			300	
T _{TWSI_F}	SDA Fall Time	100 kHz			300	ns
		400 kHz			300	
T _{TWSI} _	Clock High Period	100 kHz	4000			ns
HIGH		400 kHz	600			
T _{TWSI_LO}	Clock Low Period	100 kHz	4700			ns
		400 kHz	1300			
T _{TWSI_}	Start Condition Setup Time	100 kHz	4700			ns
SU:STA	(for a Repeated Start Condition)	400 kHz	600			
T _{TWSI} _	Start Condition Hold Time	100 kHz	4000			ns
HD:STA		400 kHz	600			
T _{TWSI} _	Stop Condition Setup Time	100 kHz	4000			ns
SU:STO		400 kHz	600			
T _{TWSI} _	Data in Setup Time	100 kHz	250			ns
SU:DAT		400 kHz	100			
T _{TWSI} _	Data in Hold Time	100 kHz	0			ns
HD:DAT		400 kHz	0			
T _{TWSI_BUF}	Bus Free Time	100 kHz	4700			ns
		400 kHz	1300			
T _{TWSI_DLY}	SCL Low to SDA Data Out	100 kHz	40		200	ns
	Valid	400 kHz	40		200	
	1	1				

Figure 20: Two-Wire Serial Interface Timing

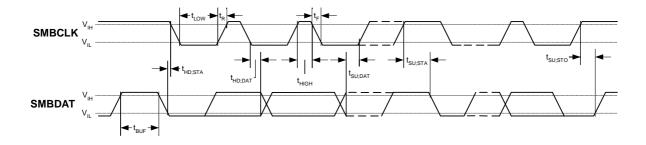
Page 252


4.6.6 SPI FLash Memory Interface Timing

Symbol	Parameter	Min	Тур	Max	Units
F _{SCK}	SCK Clock Frequency	0		20	MHz
t _{RI}	Input Rise Time			20	ns
t _{Fl}	Input Fall Time			20	ns
t _{WH}	SCK High Time	20			ns
t _{WL}	SCK Low Time	20			ns
t _{CS}	CS High Time	25			ns
t _{CSS}	CS Setup Time	25			ns
t _{CSH}	CS Hold Time	25			ns
t _{SU}	Data In Setup Time	5			ns
t _H	Data In Hold Time	5			ns
t _{HD}	Hold Setup Time	15			ns
t _{CD}	Hold Time	15			ns
t _V	Output Valid			20	ns
t _{HO}	Output Hold Time	0			ns
t _{LZ}	Hold to Output Low Z			200	ns
t _{HZ}	Hold to Output High Z			200	ns
t _{DIS}	Output Disable Time			100	ns
t _{EC}	Erase Cycle Time per Sector			1.1	S
t _{BPC}	Byte Program Cycle Time ¹		60	100	μs
Endurance ²			10K		Write Cycles ³

- 1. The programming time for n bytes will be equal to n * tBPC.
- 2. This parameter is characterized at 3.0V, 25°C and is not 100% tested.
- 3. One write cycle consists of erasing a sector, followed by programming the same sector.

Figure 21: Synchronous Data Timing


4.6.7 SMBUS Specifications

For an exact description of the SMBus 2.0 Electrical characteristics, refer to the SMBus specification:

-System Management Bus (SMBus) Specification Version 2.0

Symbol	Parameter	Min	Тур	Max	Units
F _{SMB}	SMBus Operating Frequency	10		100	KHz
T _{BUF}	Bus free time between stop and Start Condition 4.7			μs	
T _{HD;STA}	Hold time after (Repeated) Start Condition. After this period, the first clock is generated.		μs		
T _{SU;STA}	Repeated Start Condition Setup	4.7			μs
T _{SU;STO}	Stop condition after setup time	4.0			μs
T _{HD;DAT}	Data hold time	300			ns
T _{SU;DAT}	Data setup time	250			ns
T _{TIMEOUT}			35	ms	
T _{LOW}	Clock Low Period	4.7			μs
T _{HIGH}	Clock High Period	4.0		50	μs
T _{LOW;SEXT}	Cumulative clock low extend time (slave device)			25	ms
T _{LOW;MEXT}	Cumulative clock low extend time (master device)			10	ms
T _F	Clock/Data Fall Time			300	ns
T _R	Clock/Data Rise Time			1000	ns
T _{POR}	Time in which a device must be operational after power-on reset			500	ms

Figure 22: SMBus AC Specifications

4.7 IEEE AC Parameters

IEEE tests are typically based on templates and cannot simply be specified by number. For an exact description of the templates and the test conditions, refer to the IEEE specifications:

- -10BASE-T IEEE 802.3 Clause 14-2000
- -100BASE-TX ANSI X3.263-1995
- -1000BASE-T IEEE 802.3ab Clause 40 Section 40.6.1.2 Figure 40-26 shows the template waveforms for transmitter electrical specifications.

(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

` 0		•	J		•	,	
Symbol	Parameter	Pins	Condition	Min	Тур	Max	Units
T _{RISE}	Rise time	MDI[1:0]	100BASE-TX	3.0	4.0	5.0	ns
T _{FALL}	Fall time	MDI[1:0]	100BASE-TX	3.0	4.0	5.0	ns
T _{RISE} / T _{FALL} Symmetry		MDI[1:0]	100BASE-TX	0		0.5	ns
DCD	Duty cycle distortion	MDI[1:0]	100BASE-TX	0		0.5 ¹	ns, peak- peak
Transmit Jitter		MDI[1:0]	100BASE-TX	0		1.4	ns, peak- peak

^{1.} ANSI X3.263-1995 Figure 9-3.

Page 256

Section 5. Mechanical Drawings

5.1 64-Pin QFN Package

Figure 23: 88E8053 64-Pin QFN Package

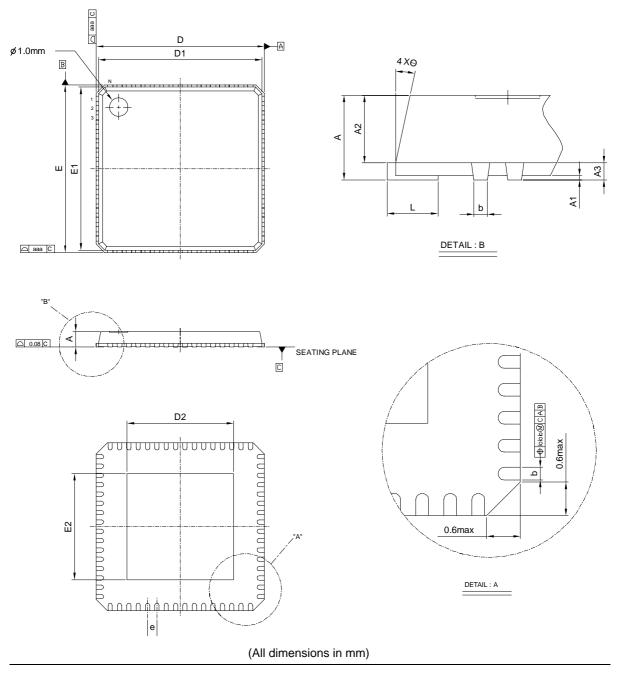
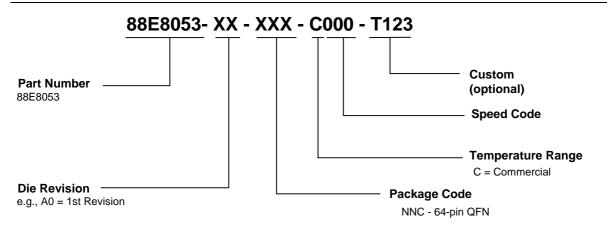


Table 56: 64-Pin QFN Mechanical Dimensions

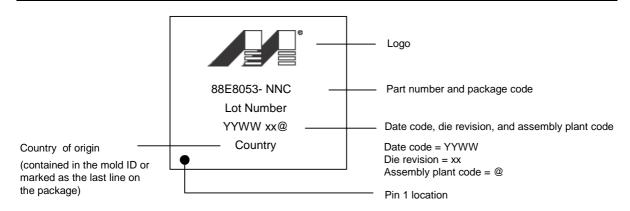

	Dimensions in mm				
Symbol	MIN	NOM	MAX		
А	0.80	0.85	1.00		
A1	0.00	0.02	0.05		
A2		0.65	1.00		
А3		0.20 REF			
b	0.18	0.18 0.23 0.30			
D	9.00 BSC				
D1	8.75 BSC				
E	9.00 BSC				
E1	8.75 BSC				
е	0.50 BSC				
L	0.30	0.40	0.50		
θ	0°		12°		
aaa			0.25		
bbb	0.10		0.10		
chamfer	0.60		0.60		

Die Pad Size				
Symbol	Dimension in mm			
D ₂	5.46 ± 0.20			
E ₂	6.25 ± 0.20			

Section 6. Order Information

Figure 24 shows the ordering part numbering scheme for the 88E8053. Contact Marvell[®] or sales representatives for complete ordering information.

Figure 24: Sample Ordering Part Number



The standard ordering part number is:

• 88E8053-XX-NNC-C000

Figure 25 shows a typical package marking and pin 1 location for an 88E8053 part. Markings for the other variants are similar.

Figure 25: 88E8053 Package Marking and Pin 1 Location

MOVING FORWARD

FASTER®

Marvell Semiconductor, Inc.

700 First Avenue Sunnyvale, CA 94089

Phone 408.222.2500 Fax 408.752.9028

www.marvell.com

US and Worldwide Offices

Marvell Semiconductor, Inc.

700 First Avenue Sunnyvale, CA 94089 Tel: 1.408.222.2500 Fax: 1.408.752.9028

Marvell Asia Pte, Ltd.

151 Lorong Chuan, #02-05 New Tech Park Singapore 556741 Tel: 65.6756.1600 Fax: 65.6756.7600

Marvell Japan K.K.

Shinjuku Center Bldg. 50F 1-25-1, Nishi-Shinjuku, Shinjuku-ku Tokyo 163-0650 Tel: 81.(0).3.5324.0355 Fax: 81.(0).3.5324.0354

Marvell Semiconductor Israel, Ltd.

Moshav Manof D.N. Misgav 20184 Israel Tel: 972.4.999.9555 Fax: 972.4.999.9574

Worldwide Sales Offices

Western US Sales Office

Marvell

700 First Avenue Sunnyvale, CA 94089 Tel: 1.408.222.2500 Fax: 1.408.752.9028 Sales Fax: 1.408.752.9029

Central US Sales Office

Marvell

11709 Boulder Lane, Ste. #220 Austin, TX 78726 Tel: 1.512.336.1551 Fax: 1.512.336.1552

Eastern US/Canada Sales Office

Marvell

Parlee Office Park 1 Meeting House Road, Suite 1 Chelmsford, MA 01824 Tel: 978 250-0588 Fax: 978 250-0589

Europe Sales Office

Marvell

3 Clifton Court Corner Hall Hemel Hempstead Hertfordshire, HP3 9XY United Kingdom Tel: 44.(0).1442.211668 Fax: 44.(0).1442.211543

Marvell

Fagerstagatan 4 163 08 Spanga Stockholm, Sweden Tel: 46.16.146348 Fax: 46.16.482425

Marvell

56400 Le Bono France Tel: 33.297.579697 Fax: 33.297.578933

5 Rue Poincare

Israel Sales Office

Marvell

Ofek Center Bldg. 2, Floor 2 Northern Industrial Zone LOD 71293 Israel Tel: 972.8.924.7555 Fax: 972.8.924.7554

China Sales Office

Marvell

5J, 1800 Zhong Shan West Road Shanghai, China 200233 Tel: 86.21.6440.1350 Fax: 86.21.6440.0799

Japan Sales Office

Marvell

Helios Kannai Bldg. 12F 3-21-2 Motohama-cho, Naka-ku Yokohama, Kanagawa Japan 231-0004 Tel: 81.45.222.8811 Fax: 81.45.222.8812

Taiwan Sales Office

Marvell 2Fl., No. 1, Alley 20, Lane 407

Ti-Ding Blvd., Nei Hu District Taipei, Taiwan 114, R. O. C Tel: (886-2).7720.5700 FAX: (886-2).7720.5707

For more information, visit our website at: www.marvell.com

Copyright © 2004. Marvell International Ltd. All rights reserved. Marvell, the Marvell logo, Moving Forward Faster, Alaska, Fastwriter, GalNet, PHYAdvantage and Prestera are registered trademarks of Marvell. Discovery, DSP Switcher, GalTis, Horizon, Libertas, Link Street, NetGX, RADLAN, Raising The Technology Bar, The Technology Within, UniMAC, Virtual Cable Tester, and Yukon are trademarks of Marvell. All other trademarks are the property of their respective owners.